Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSech






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSech[z] > Series representations > Generalized power series > Expansions on branch cuts > For the function itself > In the left half-plane near the origin





http://functions.wolfram.com/01.30.06.0047.01









  


  










Input Form





ArcSech[z] \[Proportional] 2 Pi Floor[Arg[x - z]/(2 Pi)] Exp[(-((Pi I)/2)) Floor[Arg[x - z]/(2 Pi)]] + I (ArcSec[x] - (-x + z)/(x Sqrt[-1 + x^2]) + ((-1 + 2 x^2) (-x + z)^2)/ (2 Sqrt[-1 + x^2] x^2 (-1 + x^2)) + O[(z - x)^3]) /; Element[x, Reals] && -1 < x < 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcSech", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["2", " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Exp", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List[RowBox[List["ArcSec", "[", "x", "]"]], "-", FractionBox[RowBox[List[RowBox[List["-", "x"]], "+", "z"]], RowBox[List["x", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "x"]], "+", "z"]], ")"]], "2"]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"]]]], " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"]]], ")"]]]]], "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "3"], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "\[And]", RowBox[List[RowBox[List["-", "1"]], "<", "x", "<", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mrow> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> x </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &lt; </mo> <mi> x </mi> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <arcsech /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <arcsec /> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> x </ci> <reals /> </apply> <apply> <lt /> <cn type='integer'> -1 </cn> <ci> x </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSech", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["-", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["x", "-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["ArcSec", "[", "x", "]"]], "-", FractionBox[RowBox[List[RowBox[List["-", "x"]], "+", "z"]], RowBox[List["x", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", SuperscriptBox["x", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "x"]], "+", "z"]], ")"]], "2"]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"]]]], " ", SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"]]], ")"]]]]], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List["z", "-", "x"]], "]"]], "3"]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List[RowBox[List["-", "1"]], "<", "x", "<", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.