Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSech






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSech[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Arguments involving trigonometric functions > Involving sin





http://functions.wolfram.com/01.30.21.0017.01









  


  










Input Form





Integrate[ArcSech[Sin[z]], z] == (I PolyLog[2, -E^(I z)] (Cos[z/2] + Sin[z/2]) Sqrt[(1 - Sin[z])/(1 + Sin[z])] - I PolyLog[2, E^(I z)] (Cos[z/2] + Sin[z/2]) Sqrt[(1 - Sin[z])/(1 + Sin[z])] + z (ArcSech[Sin[z]] (Cos[z/2] - Sin[z/2]) + (Log[1 - E^(I z)] - Log[1 + E^(I z)]) (Cos[z/2] + Sin[z/2]) Sqrt[(1 - Sin[z])/(1 + Sin[z])]))/(Cos[z/2] - Sin[z/2])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["ArcSech", "[", RowBox[List["Sin", "[", "z", "]"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "+", RowBox[List["Sin", "[", FractionBox["z", "2"], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["1", "-", RowBox[List["Sin", "[", "z", "]"]]]], RowBox[List["1", "+", RowBox[List["Sin", "[", "z", "]"]]]]]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "+", RowBox[List["Sin", "[", FractionBox["z", "2"], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["1", "-", RowBox[List["Sin", "[", "z", "]"]]]], RowBox[List["1", "+", RowBox[List["Sin", "[", "z", "]"]]]]]]]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["ArcSech", "[", RowBox[List["Sin", "[", "z", "]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "-", RowBox[List["Sin", "[", FractionBox["z", "2"], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "+", RowBox[List["Sin", "[", FractionBox["z", "2"], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["1", "-", RowBox[List["Sin", "[", "z", "]"]]]], RowBox[List["1", "+", RowBox[List["Sin", "[", "z", "]"]]]]]]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "-", RowBox[List["Sin", "[", FractionBox["z", "2"], "]"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <arcsech /> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sin /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <arcsech /> <apply> <sin /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sin /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["ArcSech", "[", RowBox[List["Sin", "[", "z_", "]"]], "]"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "+", RowBox[List["Sin", "[", FractionBox["z", "2"], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["1", "-", RowBox[List["Sin", "[", "z", "]"]]]], RowBox[List["1", "+", RowBox[List["Sin", "[", "z", "]"]]]]]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "+", RowBox[List["Sin", "[", FractionBox["z", "2"], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["1", "-", RowBox[List["Sin", "[", "z", "]"]]]], RowBox[List["1", "+", RowBox[List["Sin", "[", "z", "]"]]]]]]]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["ArcSech", "[", RowBox[List["Sin", "[", "z", "]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "-", RowBox[List["Sin", "[", FractionBox["z", "2"], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "+", RowBox[List["Sin", "[", FractionBox["z", "2"], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["1", "-", RowBox[List["Sin", "[", "z", "]"]]]], RowBox[List["1", "+", RowBox[List["Sin", "[", "z", "]"]]]]]]]]]], ")"]]]]]], RowBox[List[RowBox[List["Cos", "[", FractionBox["z", "2"], "]"]], "-", RowBox[List["Sin", "[", FractionBox["z", "2"], "]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.