Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSech






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSech[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Arguments involving hyperbolic functions > Involving tanh





http://functions.wolfram.com/01.30.21.0024.01









  


  










Input Form





Integrate[ArcSech[Tanh[z]], z] == Cosh[z] Sinh[z] (ArcSech[Tanh[z]] Sech[z] (Cosh[(1/2) ArcSech[Tanh[z]]]^2 (Log[1 + E^(-2 ArcSech[Tanh[z]])] - 2 Log[1 + E^(-ArcSech[Tanh[z]])]) (-Cosh[z] + Sinh[z]) + (Log[1 + E^(-2 ArcSech[Tanh[z]])] - 2 Log[1 - E^(-ArcSech[Tanh[z]])]) (Cosh[z] + Sinh[z]) Sinh[(1/2) ArcSech[Tanh[z]]]^2) + 2 Cosh[(1/2) ArcSech[Tanh[z]]]^2 PolyLog[2, -E^(-ArcSech[Tanh[z]])] (-1 + Tanh[z]) + 2 PolyLog[2, E^(-ArcSech[Tanh[z]])] Sinh[(1/2) ArcSech[Tanh[z]]]^2 (1 + Tanh[z]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["Cosh", "[", "z", "]"]], " ", RowBox[List["Sinh", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], " ", RowBox[List["Sech", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["-", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Cosh", "[", "z", "]"]]]], "+", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["-", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "z", "]"]], "+", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]], "]"]], "2"]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]], "]"]], "2"], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["-", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", "z", "]"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["-", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]], "]"]], "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", "z", "]"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <arcsech /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <cosh /> <ci> z </ci> </apply> <apply> <sinh /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> sech </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <cosh /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arcsech /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <arcsech /> <apply> <tanh /> <ci> z </ci> </apply> </apply> <apply> <sech /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <arcsech /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> sech </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <sinh /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cosh /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <cosh /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arcsech /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <arcsech /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> sech </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <cosh /> <ci> z </ci> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <sinh /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arcsech /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> sech </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <sinh /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arcsech /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z_", "]"]], "]"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["Cosh", "[", "z", "]"]], " ", RowBox[List["Sinh", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], " ", RowBox[List["Sech", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["-", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Cosh", "[", "z", "]"]]]], "+", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List["-", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "z", "]"]], "+", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]], "]"]], "2"]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]], "]"]], "2"], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["-", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Tanh", "[", "z", "]"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List["-", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcSech", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]], "]"]], "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Tanh", "[", "z", "]"]]]], ")"]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.