Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSinh






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSinh[z] > Series representations > Generalized power series > Expansions at generic point z==z0 > For the function itself





http://functions.wolfram.com/01.25.06.0024.01









  


  










Input Form





ArcSinh[z] \[Proportional] -((Pi I)/2) + (1/(1 - I Subscript[z, 0]))^((1/2) Floor[Arg[I (Subscript[z, 0] - z)]/ (2 Pi)]) (1 - I Subscript[z, 0])^ ((1/2) Floor[Arg[I (Subscript[z, 0] - z)]/(2 Pi)]) (2 Pi I^Floor[Arg[I (z - Subscript[z, 0])]/(2 Pi)] Floor[Arg[I (z - Subscript[z, 0])]/(2 Pi)] Floor[(Pi + Arg[1 + I Subscript[z, 0]])/(2 Pi)] + (1/2) (1/(1 + I Subscript[z, 0]))^ ((1/2) Floor[Arg[I (z - Subscript[z, 0])]/(2 Pi)]) (1 + I Subscript[z, 0])^((1/2) Floor[Arg[I (z - Subscript[z, 0])]/ (2 Pi)]) (Pi I + 2 ArcSinh[Subscript[z, 0]] + (2/Sqrt[1 + Subscript[z, 0]^2]) (z - Subscript[z, 0]) - (Subscript[z, 0]/(1 + Subscript[z, 0]^2)^(3/2)) (z - Subscript[z, 0])^ 2 + O[(z - Subscript[z, 0])^3]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcSinh", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List[SubscriptBox["z", "0"], "-", "z"]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List[SubscriptBox["z", "0"], "-", "z"]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["2", "\[Pi]", " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]], RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["z", "0"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "+", RowBox[List["2", " ", RowBox[List["ArcSinh", "[", SubscriptBox["z", "0"], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["2", " "]], SqrtBox[RowBox[List["1", "+", SubsuperscriptBox["z", "0", "2"]]]]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[" ", SubscriptBox["z", "0"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubsuperscriptBox["z", "0", "2"]]], ")"]], RowBox[List["3", "/", "2"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]], "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "3"], "]"]]]], ")"]]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> &#8520; </mi> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> - </mo> <mfrac> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <arcsinh /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <power /> <imaginaryi /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <arcsinh /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSinh", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SubscriptBox["zz", "0"], "-", "z"]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SubscriptBox["zz", "0"], "-", "z"]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Pi]", " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "+", RowBox[List["Arg", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", FractionBox["1", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SubscriptBox["zz", "0"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "+", RowBox[List["2", " ", RowBox[List["ArcSinh", "[", SubscriptBox["zz", "0"], "]"]]]], "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], SqrtBox[RowBox[List["1", "+", SubsuperscriptBox["zz", "0", "2"]]]]], "-", FractionBox[RowBox[List[SubscriptBox["zz", "0"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SubsuperscriptBox["zz", "0", "2"]]], ")"]], RowBox[List["3", "/", "2"]]]], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], "]"]], "3"]]], ")"]]]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.