Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Introduction to the Cosine Function in Mathematica





Operations carried out by specialized Mathematica functions

Series expansions

Calculating the series expansion of a cosine function to hundreds of terms can be done in seconds.

Mathematica comes with the add‐on package DiscreteMath`RSolve` that allows finding the general terms of the series for many functions. After loading this package, and using the package function SeriesTerm, the following term of can be evaluated.

This result can be checked by the following process.

Differentiation

Mathematica can evaluate derivatives of the cosine function of an arbitrary positive integer order.

Finite summation

Mathematica can calculate finite symbolic sums that contain the cosine function. Here are some examples.

Infinite summation

Mathematica can calculate infinite sums including the cosine function. Here are some examples.

Finite products

Mathematica can calculate some finite symbolic products that contain the cosine function. Here is an example.

Indefinite integration

Mathematica can calculate a huge number of doable indefinite integrals that contain the cosine function. Here are some examples.

Definite integration

Mathematica can calculate wide classes of definite integrals that contain the cosine function. Here are some examples.

Limit operation

Mathematica can calculate limits that contain the cosine function. Here are some examples.

Solving equations

The next inputs solve two equations that contain the cosine function. Because of the multivalued nature of the inverse cosine function, a printed message indicates that only some of the possible solutions are returned.

A complete solution of the previous equation can be obtained using the function Reduce.

Solving differential equations

Here are differential equations whose linear independent solutions include the cosine function. The solutions of the simplest second-order linear ordinary differential equation with constant coefficients can be represented using and .

In the last input, the differential equation was solved for . If the argument is suppressed, the result is returned as a pure function (in the sense of the ‐calculus).

The advantage of such a pure function is that it can be used for different arguments, derivatives, and more.

In carrying out the algorithm to solve the following nonlinear differential equation, Mathematica has to solve a transcendental equation. In doing so, the generically multivariate inverse of a function is encountered, and a message is issued that a solution branch is potentially missed.

Integral transforms

Mathematica supports the main integral transforms like direct and inverse Fourier, Laplace, and Z transforms that can give results that contain classical or generalized functions.

Plotting

Mathematica has built‐in functions for 2D and 3D graphics. Here are some examples.