Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Coth






Mathematica Notation

Traditional Notation









Elementary Functions > Coth[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic functions > Involving algebraic functions of sinh > Involving (a+b sinh(c z))beta





http://functions.wolfram.com/01.22.21.0091.01









  


  










Input Form





Integrate[Sqrt[a - I a Sinh[c z]] Coth[c z], z] == ((-2 I ArcTan[Coth[(c z)/4]] + 2 I ArcTan[Tanh[(c z)/4]] + 4 Cosh[(c z)/2] - Log[Cosh[(c z)/4]^2 Cosh[(c z)/2]] + Log[Cosh[(c z)/2] Sinh[(c z)/4]^2] - 4 I Sinh[(c z)/2]) Sqrt[a - I a Sinh[c z]])/ (2 c (Cosh[(c z)/2] - I Sinh[(c z)/2]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["ArcTan", "[", RowBox[List["Coth", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcTan", "[", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]], "2"], " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]], "2"]]], "]"]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]]]], ")"]], " ", SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <coth /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> <apply> <arctan /> <apply> <coth /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <arctan /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <times /> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SqrtBox[RowBox[List["a_", "-", RowBox[List["\[ImaginaryI]", " ", "a_", " ", RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]]], " ", RowBox[List["Coth", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["ArcTan", "[", RowBox[List["Coth", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcTan", "[", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]], "2"], " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]], "2"]]], "]"]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]]]], ")"]], " ", SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]]]], ")"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.