Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Coth






Mathematica Notation

Traditional Notation









Elementary Functions > Coth[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic functions > Involving sinh and cosh > Other integrals





http://functions.wolfram.com/01.22.21.0153.01









  


  










Input Form





Integrate[((A + B Sinh[c z]) Coth[c z])/(a + b Cosh[c z]), z] == (B z)/b + (2 a B ArcTan[((a - b) Tanh[(c z)/2])/Sqrt[-a^2 + b^2]])/ (b Sqrt[-a^2 + b^2] c) + (A Log[Cosh[(c z)/2]])/(a c - b c) + (a A Log[a + b Cosh[c z]])/((-a^2) c + b^2 c) + (A Log[Sinh[(c z)/2]])/((a + b) c)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["A", "+", RowBox[List["B", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]], " "]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["B", " ", "z"]], "b"], "+", FractionBox[RowBox[List["2", " ", "a", " ", "B", " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]], "]"]]]], RowBox[List["b", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]], " ", "c"]]], "+", FractionBox[RowBox[List["A", " ", RowBox[List["Log", "[", RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "]"]]]], RowBox[List[RowBox[List["a", " ", "c"]], "-", RowBox[List["b", " ", "c"]]]]], "+", FractionBox[RowBox[List["a", " ", "A", " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", "c"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", "c"]]]]], "+", FractionBox[RowBox[List["A", " ", RowBox[List["Log", "[", RowBox[List["Sinh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "c"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> A </mi> <mo> + </mo> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mi> b </mi> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> B </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> A </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> A </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> A </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <plus /> <ci> A </ci> <apply> <times /> <ci> B </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <coth /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> B </ci> <ci> z </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> B </ci> <apply> <arctan /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> A </ci> <apply> <ln /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> A </ci> <apply> <ln /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> A </ci> <apply> <ln /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["A_", "+", RowBox[List["B_", " ", RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]], ")"]], " ", RowBox[List["Coth", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["B", " ", "z"]], "b"], "+", FractionBox[RowBox[List["2", " ", "a", " ", "B", " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]]], "]"]]]], RowBox[List["b", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]], " ", "c"]]], "+", FractionBox[RowBox[List["A", " ", RowBox[List["Log", "[", RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "]"]]]], RowBox[List[RowBox[List["a", " ", "c"]], "-", RowBox[List["b", " ", "c"]]]]], "+", FractionBox[RowBox[List["a", " ", "A", " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", "c"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", "c"]]]]], "+", FractionBox[RowBox[List["A", " ", RowBox[List["Log", "[", RowBox[List["Sinh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "c"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.