Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Coth






Mathematica Notation

Traditional Notation









Elementary Functions > Coth[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic functions > Involving sinh and tanh





http://functions.wolfram.com/01.22.21.0156.01









  


  










Input Form





Integrate[(A + B Tanh[z] + C Coth[z])/(a + b Sinh[z]), z] == (2 Cosh[z] (2 a b Sqrt[-a^2 - b^2] B ArcTan[Tanh[z/2]] + 2 a A (a^2 + b^2) ArcTan[(b - a Tanh[z/2])/Sqrt[-a^2 - b^2]] + Sqrt[-a^2 - b^2] (a^2 B Log[Cosh[z]] + (a^2 + b^2) C Log[Sinh[z]] - (b^2 C + a^2 (B + C)) Log[a + b Sinh[z]])) Sinh[z] (A + C Coth[z] + B Tanh[z]))/(a (a - I b) (a + I b) Sqrt[-a^2 - b^2] (-B + C + (B + C) Cosh[2 z] + A Sinh[2 z]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["A", "+", RowBox[List["B", " ", RowBox[List["Tanh", "[", "z", "]"]]]], "+", RowBox[List["C", " ", RowBox[List["Coth", "[", "z", "]"]]]]]], RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", "z", "]"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["Cosh", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "b", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]], " ", "B", " ", RowBox[List["ArcTan", "[", RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]], "]"]]]], "+", RowBox[List["2", " ", "a", " ", "A", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["b", "-", RowBox[List["a", " ", RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["a", "2"], " ", "B", " ", RowBox[List["Log", "[", RowBox[List["Cosh", "[", "z", "]"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", "C", " ", RowBox[List["Log", "[", RowBox[List["Sinh", "[", "z", "]"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "2"], " ", "C"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List["B", "+", "C"]], ")"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List["A", "+", RowBox[List["C", " ", RowBox[List["Coth", "[", "z", "]"]]]], "+", RowBox[List["B", " ", RowBox[List["Tanh", "[", "z", "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "B"]], "+", "C", "+", RowBox[List[RowBox[List["(", RowBox[List["B", "+", "C"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["A", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> A </mi> <mo> + </mo> <mrow> <mi> C </mi> <mo> &#8290; </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> A </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> B </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> C </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> B </mi> <mo> + </mo> <mi> C </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> C </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> A </mi> <mo> + </mo> <mrow> <mi> C </mi> <mo> &#8290; </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> B </mi> </mrow> <mo> + </mo> <mi> C </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> B </mi> <mo> + </mo> <mi> C </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> A </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <plus /> <ci> A </ci> <apply> <times /> <ci> C </ci> <apply> <coth /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> B </ci> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sinh /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <cosh /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> A </ci> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <tanh /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> B </ci> <apply> <arctan /> <apply> <tanh /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> B </ci> <apply> <ln /> <apply> <cosh /> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> C </ci> <apply> <ln /> <apply> <sinh /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> B </ci> <ci> C </ci> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> C </ci> </apply> </apply> <apply> <ln /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sinh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sinh /> <ci> z </ci> </apply> <apply> <plus /> <ci> A </ci> <apply> <times /> <ci> C </ci> <apply> <coth /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> B </ci> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> B </ci> </apply> <ci> C </ci> <apply> <times /> <apply> <plus /> <ci> B </ci> <ci> C </ci> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> A </ci> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["A_", "+", RowBox[List["B_", " ", RowBox[List["Tanh", "[", "z_", "]"]]]], "+", RowBox[List["C", " ", RowBox[List["Coth", "[", "z_", "]"]]]]]], RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sinh", "[", "z_", "]"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", RowBox[List["Cosh", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "b", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]], " ", "B", " ", RowBox[List["ArcTan", "[", RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]], "]"]]]], "+", RowBox[List["2", " ", "a", " ", "A", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["b", "-", RowBox[List["a", " ", RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["a", "2"], " ", "B", " ", RowBox[List["Log", "[", RowBox[List["Cosh", "[", "z", "]"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", "C", " ", RowBox[List["Log", "[", RowBox[List["Sinh", "[", "z", "]"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "2"], " ", "C"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List["B", "+", "C"]], ")"]]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", "z", "]"]]]]]], "]"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List["A", "+", RowBox[List["C", " ", RowBox[List["Coth", "[", "z", "]"]]]], "+", RowBox[List["B", " ", RowBox[List["Tanh", "[", "z", "]"]]]]]], ")"]]]], RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "B"]], "+", "C", "+", RowBox[List[RowBox[List["(", RowBox[List["B", "+", "C"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["A", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.