html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Coth

 http://functions.wolfram.com/01.22.21.0233.01

 Input Form

 Integrate[z^n E^(p z) Cos[a z] Cosh[c z] Coth[c z], z] == (-(1/2)) E^(c z) n! (E^((I a + p) z) Sum[(1/(-j + n)!) ((-1)^j (I a + c + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[a, 1], \[Ellipsis], Subscript[a, 1 + j], 1}, {1 + Subscript[a, 1], \[Ellipsis], 1 + Subscript[a, 1 + j]}, E^(2 c z)]), {j, 0, n}] + E^(((-I) a + p) z) Sum[(1/(-j + n)!) ((-1)^j ((-I) a + c + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[b, 1], \[Ellipsis], Subscript[b, 1 + j], 1}, {1 + Subscript[b, 1], \[Ellipsis], 1 + Subscript[b, 1 + j]}, E^(2 c z)]), {j, 0, n}]) - (1/4) E^(c z) n! (E^((I a - 2 c + p) z) Sum[(1/(-j + n)!) ((-1)^j (I a - c + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[c, 1], \[Ellipsis], Subscript[c, 1 + j], 1}, {1 + Subscript[c, 1], \[Ellipsis], 1 + Subscript[c, 1 + j]}, E^(2 c z)]), {j, 0, n}] + E^(((-I) a - 2 c + p) z) Sum[(1/(-j + n)!) ((-1)^j ((-I) a - c + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[ {Subscript[d, 1], \[Ellipsis], Subscript[d, 1 + j], 1}, {1 + Subscript[d, 1], \[Ellipsis], 1 + Subscript[d, 1 + j]}, E^(2 c z)]), {j, 0, n}] + E^((I a + 2 c + p) z) Sum[(1/(-j + n)!) ((-1)^j (I a + 3 c + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[e, 1], \[Ellipsis], Subscript[e, 1 + j], 1}, {1 + Subscript[e, 1], \[Ellipsis], 1 + Subscript[e, 1 + j]}, E^(2 c z)]), {j, 0, n}] + E^(((-I) a + 2 c + p) z) Sum[(1/(-j + n)!) ((-1)^j ((-I) a + 3 c + p)^(-1 - j) z^(-j + n) HypergeometricPFQ[ {Subscript[f, 1], \[Ellipsis], Subscript[f, 1 + j], 1}, {1 + Subscript[f, 1], \[Ellipsis], 1 + Subscript[f, 1 + j]}, E^(2 c z)]), {j, 0, n}]) /; Subscript[a, 1] == Subscript[a, 2] == \[Ellipsis] == Subscript[a, n + 1] == (c + p + I a)/(2 c) && Subscript[b, 1] == Subscript[b, 2] == \[Ellipsis] == Subscript[b, n + 1] == (c + p - I a)/(2 c) && Subscript[c, 1] == Subscript[c, 2] == \[Ellipsis] == Subscript[c, n + 1] == (p + I a - c)/(2 c) && Subscript[d, 1] == Subscript[d, 2] == \[Ellipsis] == Subscript[d, n + 1] == (p - I a - c)/(2 c) && Subscript[e, 1] == Subscript[e, 2] == \[Ellipsis] == Subscript[e, n + 1] == (p + I a + 3 c)/(2 c) && Subscript[f, 1] == Subscript[f, 2] == \[Ellipsis] == Subscript[f, n + 1] == (p - I a + 3 c)/(2 c) && Element[n, Integers] && n >= 0

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "c", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["a", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "c", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["b", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]]]], ")"]]]], "-", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "c", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["c", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["c", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["c", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["c", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "c", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["d", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["d", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["d", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["d", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["e", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["e", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["e", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["e", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["f", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["f", RowBox[List["1", "+", "j"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["f", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["f", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], ")"]]]]]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "\[Equal]", SubscriptBox["a", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["a", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["c", "+", "p", "+", RowBox[List["\[ImaginaryI]", " ", "a"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["b", "1"], "\[Equal]", SubscriptBox["b", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["b", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["c", "+", "p", "-", RowBox[List["\[ImaginaryI]", " ", "a"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["c", "1"], "\[Equal]", SubscriptBox["c", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["c", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "c", " "]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["d", "1"], "\[Equal]", SubscriptBox["d", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["d", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["p", "-", RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "c"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["e", "1"], "\[Equal]", SubscriptBox["e", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["e", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", "a"]], "+", RowBox[List["3", "c"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["f", "1"], "\[Equal]", SubscriptBox["f", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["f", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["p", "-", RowBox[List["\[ImaginaryI]", " ", "a"]], "+", RowBox[List["3", "c"]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]

 MathML Form

 z n p z cos ( a z ) cosh ( c z ) coth ( c z ) z - 1 2 c z n ! ( ( - a + p ) z j = 0 n ( - 1 ) j ( c - a + p ) - j - 1 z n - j ( n - j ) ! j + 2 F j + 1 ( - a + c + p 2 c , , - a + c + p 2 c , 1 ; - a + c + p 2 c + 1 , , - a + c + p 2 c + 1 ; 2 c z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] + ( a + p ) z j = 0 n ( - 1 ) j ( c + a + p ) - j - 1 z n - j ( n - j ) ! j + 2 F j + 1 ( a + p + c 2 c , , a + p + c 2 c , 1 ; a + p + c 2 c + 1 , , a + p + c 2 c + 1 ; 2 c z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "p", "+", "c"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "p", "+", "c"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "p", "+", "c"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "p", "+", "c"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] ) - 1 4 c z n ! ( ( - 2 c - a + p ) z j = 0 n ( - 1 ) j ( - c - a + p ) - j - 1 z n - j ( n - j ) ! j + 2 F j + 1 ( - a - c + p 2 c , , - a - c + p 2 c , 1 ; - a - c + p 2 c + 1 , , - a - c + p 2 c + 1 ; 2 c z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] + ( - 2 c + a + p ) z j = 0 n ( - 1 ) j ( - c + a + p ) - j - 1 z n - j ( n - j ) ! j + 2 F j + 1 ( a - c + p 2 c , , a - c + p 2 c , 1 ; a - c + p 2 c + 1 , , a - c + p 2 c + 1 ; 2 c z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] + ( 2 c - a + p ) z j = 0 n ( - 1 ) j ( 3 c - a + p ) - j - 1 z n - j ( n - j ) ! j + 2 F j + 1 ( - a + 3 c + p 2 c , , - a + 3 c + p 2 c , 1 ; - a + 3 c + p 2 c + 1 , , - a + 3 c + p 2 c + 1 ; 2 c z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] + ( 2 c + a + p ) z j = 0 n ( - 1 ) j ( 3 c + a + p ) - j - 1 z n - j ( n - j ) ! j + 2 F j + 1 ( a + 3 c + p 2 c , , a + 3 c + p 2 c , 1 ; a + 3 c + p 2 c + 1 , , a + 3 c + p 2 c + 1 ; 2 c z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] ) /; n Condition z z n p z a z c z c z -1 1 2 c z n -1 a p z j 0 n -1 j c -1 a p -1 j -1 z n -1 j n -1 j -1 HypergeometricPFQ -1 a c p 2 c -1 -1 a c p 2 c -1 1 -1 a c p 2 c -1 1 -1 a c p 2 c -1 1 2 c z a p z j 0 n -1 j c a p -1 j -1 z n -1 j n -1 j -1 HypergeometricPFQ a p c 2 c -1 a p c 2 c -1 1 a p c 2 c -1 1 a p c 2 c -1 1 2 c z -1 1 4 c z n -2 c -1 a p z j 0 n -1 j -1 c -1 a p -1 j -1 z n -1 j n -1 j -1 HypergeometricPFQ -1 a -1 c p 2 c -1 -1 a -1 c p 2 c -1 1 -1 a -1 c p 2 c -1 1 -1 a -1 c p 2 c -1 1 2 c z -2 c a p z j 0 n -1 j -1 c a p -1 j -1 z n -1 j n -1 j -1 HypergeometricPFQ a -1 c p 2 c -1 a -1 c p 2 c -1 1 a -1 c p 2 c -1 1 a -1 c p 2 c -1 1 2 c z 2 c -1 a p z j 0 n -1 j 3 c -1 a p -1 j -1 z n -1 j n -1 j -1 HypergeometricPFQ -1 a 3 c p 2 c -1 -1 a 3 c p 2 c -1 1 -1 a 3 c p 2 c -1 1 -1 a 3 c p 2 c -1 1 2 c z 2 c a p z j 0 n -1 j 3 c a p -1 j -1 z n -1 j n -1 j -1 HypergeometricPFQ a 3 c p 2 c -1 a 3 c p 2 c -1 1 a 3 c p 2 c -1 1 a 3 c p 2 c -1 1 2 c z n [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Cos", "[", RowBox[List["a_", " ", "z_"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]], " ", RowBox[List["Coth", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "c", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "c", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "c", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "c", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]], "-", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "c", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "c", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "c", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "c", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "c", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", RowBox[List["3", " ", "c"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K\$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2002-12-18