Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Coth






Mathematica Notation

Traditional Notation









Elementary Functions > Coth[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving algebraic functions of the direct function > Involving ((a+b coth(c z))n)beta





http://functions.wolfram.com/01.22.21.0264.01









  


  










Input Form





Integrate[1/Sqrt[(a + b Coth[c z])^3], z] == (Sqrt[I (a + b)] (a + b Coth[c z]) (I (I (a + b))^(3/2) ArcTanh[Sqrt[I (a + b Coth[c z])]/Sqrt[I (a - b)]] Sqrt[I (a + b Coth[c z])] + Sqrt[I (a - b)] (2 b Sqrt[I (a + b)] + (a - b) ArcTanh[Sqrt[I (a + b Coth[c z])]/Sqrt[I (a + b)]] Sqrt[I (a + b Coth[c z])])))/((I (a - b))^(3/2) (a + b)^2 c Sqrt[(a + b Coth[c z])^3])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "3"]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]], SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]]]]]], "]"]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]]], "+", RowBox[List[SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]], SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]]]], "]"]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"], " ", "c", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "3"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <coth /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <coth /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <coth /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <coth /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <coth /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <coth /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 2 </cn> </apply> <ci> c </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <coth /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Coth", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]], ")"]], "3"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]], SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]]]]]], "]"]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]]], "+", RowBox[List[SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]], SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]]]], "]"]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]]]]], ")"]]]]]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"], " ", "c", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "3"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.