Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Coth






Mathematica Notation

Traditional Notation









Elementary Functions > Coth[z] > Integration > Indefinite integration > Involving functions of the direct function and hyperbolic functions > Involving rational functions of the direct function and hyperbolic functions > Involving rational functions of tanh > Involving (a tanh2(c z)+b coth2(c z))-n





http://functions.wolfram.com/01.22.21.0393.01









  


  










Input Form





Integrate[1/(a Tanh[c z]^2 + b Coth[c z]^2), z] == (2 a^(1/4) b^(1/4) c z + (-1)^(1/4) (Sqrt[a] + I Sqrt[b]) ArcTan[((-1)^(1/4) a^(1/4) Tanh[c z])/b^(1/4)] + (-1)^(1/4) (I Sqrt[a] + Sqrt[b]) ArcTan[((-1)^(3/4) a^(1/4) Tanh[c z])/ b^(1/4)])/(2 a^(1/4) b^(1/4) (a + b) c)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "c", " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["a", RowBox[List["1", "/", "4"]]], " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]], SuperscriptBox["b", RowBox[List["1", "/", "4"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"]]], "+", SqrtBox["b"]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["a", RowBox[List["1", "/", "4"]]], " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]], SuperscriptBox["b", RowBox[List["1", "/", "4"]]]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "c"]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> coth </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mroot> <mi> a </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mroot> <mi> b </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mroot> <mi> a </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mroot> <mi> b </mi> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> a </mi> </msqrt> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mroot> <mi> a </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mroot> <mi> b </mi> <mn> 4 </mn> </mroot> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> a </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mroot> <mi> b </mi> <mn> 4 </mn> </mroot> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <coth /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> c </ci> <ci> z </ci> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["a_", " ", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Coth", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "c", " ", "z"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["a", RowBox[List["1", "/", "4"]]], " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]], SuperscriptBox["b", RowBox[List["1", "/", "4"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"]]], "+", SqrtBox["b"]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["a", RowBox[List["1", "/", "4"]]], " ", RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]]]], SuperscriptBox["b", RowBox[List["1", "/", "4"]]]], "]"]]]]]], RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "c"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.