Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Csch






Mathematica Notation

Traditional Notation









Elementary Functions > Csch[z] > Specific values > Values at fixed points





http://functions.wolfram.com/01.23.03.0164.01









  


  










Input Form





Csch[(Pi I)/17] == -4 (I/Sqrt[8 - Sqrt[2 (15 + Sqrt[17] - Sqrt[2 (17 - Sqrt[17])] + Sqrt[2 (34 + 6 Sqrt[17] + Sqrt[2 (17 - Sqrt[17])] - Sqrt[34 (17 - Sqrt[17])] + 8 Sqrt[2 (17 + Sqrt[17])])])]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Csch", "[", FormBox[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "17"], TraditionalForm], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["\[ImaginaryI]", "/", RowBox[List["(", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["8", "-", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["15", "+", SqrtBox["17"], "-", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["17", "-", SqrtBox["17"]]], ")"]]]]], "+", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["34", "+", RowBox[List["6", " ", SqrtBox["17"]]], "+", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["17", "-", SqrtBox["17"]]], ")"]]]]], "-", SqrtBox[RowBox[List["34", " ", RowBox[List["(", RowBox[List["17", "-", SqrtBox["17"]]], ")"]]]]], "+", RowBox[List["8", " ", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["17", "+", SqrtBox["17"]]], ")"]]]]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> Csch </mi> <mo> [ </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 17 </mn> </mfrac> <mo> ] </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#8520; </mi> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8730; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> - </mo> <mrow> <mo> &#8730; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 15 </mn> <mo> + </mo> <msqrt> <mn> 17 </mn> </msqrt> <mo> - </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 17 </mn> <mo> - </mo> <msqrt> <mn> 17 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> + </mo> <mrow> <mo> &#8730; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 34 </mn> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <msqrt> <mn> 17 </mn> </msqrt> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 17 </mn> <mo> - </mo> <msqrt> <mn> 17 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mn> 34 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 17 </mn> <mo> - </mo> <msqrt> <mn> 17 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 17 </mn> <mo> + </mo> <msqrt> <mn> 17 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <csch /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 17 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -4 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <root /> <apply> <plus /> <cn type='integer'> 8 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <root /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 15 </cn> <apply> <power /> <cn type='integer'> 17 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 17 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 17 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <root /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 34 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <cn type='integer'> 17 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 17 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 17 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 34 </cn> <apply> <plus /> <cn type='integer'> 17 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 17 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 17 </cn> <apply> <power /> <cn type='integer'> 17 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Csch", "[", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "17"], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["4", " ", "\[ImaginaryI]"]], SqrtBox[RowBox[List["8", "-", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["15", "+", SqrtBox["17"], "-", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["17", "-", SqrtBox["17"]]], ")"]]]]], "+", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["34", "+", RowBox[List["6", " ", SqrtBox["17"]]], "+", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["17", "-", SqrtBox["17"]]], ")"]]]]], "-", SqrtBox[RowBox[List["34", " ", RowBox[List["(", RowBox[List["17", "-", SqrtBox["17"]]], ")"]]]]], "+", RowBox[List["8", " ", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["17", "+", SqrtBox["17"]]], ")"]]]]]]]]], ")"]]]]]]], ")"]]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.