Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Transformations > Some functions of arguments





http://functions.wolfram.com/01.03.16.0113.01









  


  










Input Form





E^(a (b z^4)^(1/4)) == (1/(2 b^(3/4) z^3)) (b^(1/4) z (Sqrt[b] z^2 + Sqrt[b z^4]) Cosh[a b^(1/4) z] - ((-Sqrt[b]) z^2 + Sqrt[b z^4]) (b^(1/4) z Cos[a b^(1/4) z] + (b z^4)^(1/4) Sin[a b^(1/4) z]) + (b z^4)^(1/4) (Sqrt[b] z^2 + Sqrt[b z^4]) Sinh[a b^(1/4) z])










Standard Form





Cell[BoxData[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["1", "/", "4"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", SuperscriptBox["b", RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["b"], " ", SuperscriptBox["z", "2"]]], "+", SqrtBox[RowBox[List["b", " ", SuperscriptBox["z", "4"]]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["a", " ", SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["b"]]], " ", SuperscriptBox["z", "2"]]], "+", SqrtBox[RowBox[List["b", " ", SuperscriptBox["z", "4"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "z", " ", RowBox[List["Cos", "[", RowBox[List["a", " ", SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["b"], " ", SuperscriptBox["z", "2"]]], "+", SqrtBox[RowBox[List["b", " ", SuperscriptBox["z", "4"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["a", " ", SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "z"]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mroot> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> </mrow> </msup> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mroot> <mi> b </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mi> b </mi> <mn> 4 </mn> </mroot> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mrow> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mroot> <mi> b </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mi> b </mi> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mroot> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mroot> <mi> b </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mroot> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mroot> <mi> b </mi> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <cos /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox["\[ExponentialE]", RowBox[List["a_", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b_", " ", SuperscriptBox["z_", "4"]]], ")"]], RowBox[List["1", "/", "4"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["b"], " ", SuperscriptBox["z", "2"]]], "+", SqrtBox[RowBox[List["b", " ", SuperscriptBox["z", "4"]]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["a", " ", SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["b"]]], " ", SuperscriptBox["z", "2"]]], "+", SqrtBox[RowBox[List["b", " ", SuperscriptBox["z", "4"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "z", " ", RowBox[List["Cos", "[", RowBox[List["a", " ", SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "4"]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["b"], " ", SuperscriptBox["z", "2"]]], "+", SqrtBox[RowBox[List["b", " ", SuperscriptBox["z", "4"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["a", " ", SuperscriptBox["b", RowBox[List["1", "/", "4"]]], " ", "z"]], "]"]]]]]], RowBox[List["2", " ", SuperscriptBox["b", RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["z", "3"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.