Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving rational functions > Involving (a z+b)-n





http://functions.wolfram.com/01.03.21.0139.01









  


  










Input Form





Integrate[(z^4 E^(c z))/(a z + b)^2, z] == (1/a^6) ((1/(c^3 (b + a z))) (a E^(c z) (3 a b^3 c^2 - b^4 c^3 + a^2 b^2 c (2 + c z) + a^3 b (2 - c^2 z^2) + a^4 z (2 - 2 c z + c^2 z^2))) + (b^3 (-4 a + b c) ExpIntegralEi[c (b/a + z)])/E^((b c)/a))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", "z"]], "+", "b"]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", SuperscriptBox["a", "6"]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["c", "3"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]], RowBox[List["(", RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "a", " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["c", "2"]]], "-", RowBox[List[SuperscriptBox["b", "4"], " ", SuperscriptBox["c", "3"]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", "c", " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["c", " ", "z"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "3"], " ", "b", " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", "z", " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List["2", " ", "c", " ", "z"]], "+", RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "a"]], "+", RowBox[List["b", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["b", " ", "c"]], "a"]]]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mi> a </mi> <mn> 6 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> c </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> c </ci> <apply> <plus /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z_", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c_", " ", "z_"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", "z_"]], "+", "b_"]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[FractionBox[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "a", " ", SuperscriptBox["b", "3"], " ", SuperscriptBox["c", "2"]]], "-", RowBox[List[SuperscriptBox["b", "4"], " ", SuperscriptBox["c", "3"]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", "c", " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["c", " ", "z"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "3"], " ", "b", " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", "z", " ", RowBox[List["(", RowBox[List["2", "-", RowBox[List["2", " ", "c", " ", "z"]], "+", RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]], RowBox[List[SuperscriptBox["c", "3"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]], "+", RowBox[List[SuperscriptBox["b", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "a"]], "+", RowBox[List["b", " ", "c"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["b", " ", "c"]], "a"]]]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]], "]"]]]]]], SuperscriptBox["a", "6"]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.