Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving products of powers of the direct function > Involving product of powers of two direct functions > Involving (eb zr+e)mu (ec zr+g)nu





http://functions.wolfram.com/01.03.21.0396.01









  


  










Input Form





Integrate[(E^(b z^2 + e))^\[Mu] (E^(c z^2 + g))^\[Nu], z] == ((E^(e + b z^2))^\[Mu] (E^(g + c z^2))^\[Nu] Sqrt[Pi] Erfi[(2 b z \[Mu] + 2 c z \[Nu])/(2 Sqrt[b \[Mu] + c \[Nu]])])/ (E^((2 b z \[Mu] + 2 c z \[Nu])^2/(4 (b \[Mu] + c \[Nu]))) (2 Sqrt[b \[Mu] + c \[Nu]]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "+", "e"]]], ")"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "+", "g"]]], ")"]], "\[Nu]"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "z", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "c", " ", "z", " ", "\[Nu]"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]]]]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]]]], ")"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", RowBox[List["c", " ", SuperscriptBox["z", "2"]]]]]], ")"]], "\[Nu]"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "b", " ", "z", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "c", " ", "z", " ", "\[Nu]"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]]]]]], "]"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#956; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> g </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#956; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> g </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> e </ci> </apply> </apply> <ci> &#956; </ci> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> g </ci> </apply> </apply> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> &#956; </ci> </apply> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> e </ci> </apply> </apply> <ci> &#956; </ci> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> g </ci> </apply> </apply> <ci> &#957; </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> <ci> &#956; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> &#956; </ci> </apply> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> &#956; </ci> </apply> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "+", "e_"]]], ")"]], "\[Mu]_"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "+", "g_"]]], ")"]], "\[Nu]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "z", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "c", " ", "z", " ", "\[Nu]"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]]]]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]]]], ")"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", RowBox[List["c", " ", SuperscriptBox["z", "2"]]]]]], ")"]], "\[Nu]"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["2", " ", "b", " ", "z", " ", "\[Mu]"]], "+", RowBox[List["2", " ", "c", " ", "z", " ", "\[Nu]"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]]]]]], "]"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.