Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving algebraic functions of the direct function > Involving (a+b ec z)betaand rational function of ec z





http://functions.wolfram.com/01.03.21.0494.01









  


  










Input Form





Integrate[1/((d + e E^(c z)) Sqrt[a + b E^(c z)]), z] == (1/(c d)) (-((2 ArcTanh[Sqrt[a + b E^(c z)]/Sqrt[a]])/Sqrt[a]) + (2 Sqrt[e] ArcTanh[(Sqrt[e] Sqrt[a + b E^(c z)])/Sqrt[(-b) d + a e]])/ Sqrt[(-b) d + a e])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["c", " ", "d"]]], RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]]], SqrtBox["a"]], "]"]]]], SqrtBox["a"]]]], "+", FractionBox[RowBox[List["2", " ", SqrtBox["e"], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["e"], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]]]]], SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> e </mi> </msqrt> </mrow> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> e </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> </msqrt> </mrow> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mtext> </mtext> </mrow> <msqrt> <mi> a </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> </msqrt> <msqrt> <mi> a </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> e </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> c </ci> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> e </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <ci> e </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["d_", "+", RowBox[List["e_", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c_", " ", "z_"]]]]]]], ")"]], " ", SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c_", " ", "z_"]]]]]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]]], SqrtBox["a"]], "]"]]]], SqrtBox["a"]]]], "+", FractionBox[RowBox[List["2", " ", SqrtBox["e"], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["e"], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]]]]], SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]]]], "]"]]]], SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]]]]]], RowBox[List["c", " ", "d"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.