Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Integration > Indefinite integration > Involving functions of the direct function and a power function > Involving powers of the direct function and a power function > Involving powers of exp and power > Involving zalpha-1and arguments a zr





http://functions.wolfram.com/01.03.21.0542.01









  


  










Input Form





Integrate[z^(2 n) (E^(a z^2))^\[Nu], z] == ((-(1/2)) (E^(a z^2))^\[Nu] z^(1 + 2 n) ((-a) z^2 \[Nu])^(-(1/2) - n) (Erfc[Sqrt[(-a) z^2 \[Nu]]] Gamma[1/2 + n] + E^(a z^2 \[Nu]) Sum[((-a) z^2 \[Nu])^(1/2 + j)/Pochhammer[1/2 + n, 1 + j - n], {j, 0, -1 + n}] - E^(a z^2 \[Nu]) Sum[((-a) z^2 \[Nu])^(1/2 + j)/Pochhammer[1/2 + n, 1 + j - n], {j, n, -1}]))/E^(a z^2 \[Nu]) /; Element[n, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["2", "n"]]], SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", SuperscriptBox["z", "2"]]]], ")"]], "\[Nu]"], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", SuperscriptBox["z", "2"]]]], ")"]], "\[Nu]"], " ", SuperscriptBox["z", RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Erfc", "[", SqrtBox[RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "n"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "j"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "j", "-", "n"]]]], "]"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "n"]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "j"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "j", "-", "n"]]]], "]"]]]]]]]]], ")"]]]]]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> erfc </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[&quot;j&quot;, &quot;-&quot;, &quot;n&quot;, &quot;+&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mi> n </mi> </mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[&quot;j&quot;, &quot;-&quot;, &quot;n&quot;, &quot;+&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> &#957; </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#957; </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Erfc </ci> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#957; </ci> </apply> <apply> <plus /> <ci> j </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <ci> n </ci> </lowlimit> <uplimit> <cn type='integer'> -1 </cn> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#957; </ci> </apply> <apply> <plus /> <ci> j </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["2", " ", "n_"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["a_", " ", SuperscriptBox["z_", "2"]]]], ")"]], "\[Nu]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", SuperscriptBox["z", "2"]]]], ")"]], "\[Nu]"], " ", SuperscriptBox["z", RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Erfc", "[", SqrtBox[RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "n"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "j"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "j", "-", "n"]]]], "]"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "n"]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["z", "2"], " ", "\[Nu]"]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "j"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "j", "-", "n"]]]], "]"]]]]]]]]], ")"]]]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.