Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Integration > Indefinite integration > Involving functions of the direct function and a power function > Involving rational functions of the direct function and a power function > Involving zn(a+b cd z)-m





http://functions.wolfram.com/01.03.21.0777.01









  


  










Input Form





Integrate[z^3/(a + b c^(d z))^2, z] == (1/(4 a^2)) (z^4 - (4 z^3)/(d Log[c]) + (4 a z^3)/(a d Log[c] + b c^(d z) d Log[c]) + (12 z^2 Log[1 + (b c^(d z))/a])/(d^2 Log[c]^2) - (4 z^3 Log[1 + (b c^(d z))/a])/(d Log[c]) - (12 z (-2 + d z Log[c]) PolyLog[2, -((b c^(d z))/a)])/(d^3 Log[c]^3) + (24 (-1 + d z Log[c]) PolyLog[3, -((b c^(d z))/a)])/(d^4 Log[c]^4) - (24 PolyLog[4, -((b c^(d z))/a)])/(d^4 Log[c]^4))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox["z", "3"], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["c", RowBox[List["d", " ", "z"]]]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4", " ", SuperscriptBox["a", "2"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["z", "4"], "-", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "3"]]], RowBox[List["d", " ", RowBox[List["Log", "[", "c", "]"]]]]], "+", FractionBox[RowBox[List["4", " ", "a", " ", SuperscriptBox["z", "3"]]], RowBox[List[RowBox[List["a", " ", "d", " ", RowBox[List["Log", "[", "c", "]"]]]], "+", RowBox[List["b", " ", SuperscriptBox["c", RowBox[List["d", " ", "z"]]], " ", "d", " ", RowBox[List["Log", "[", "c", "]"]]]]]]], "+", FractionBox[RowBox[List["12", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["c", RowBox[List["d", " ", "z"]]]]], "a"]]], "]"]]]], RowBox[List[SuperscriptBox["d", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "c", "]"]], "2"]]]], "-", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "3"], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["c", RowBox[List["d", " ", "z"]]]]], "a"]]], "]"]]]], RowBox[List["d", " ", RowBox[List["Log", "[", "c", "]"]]]]], "-", FractionBox[RowBox[List["12", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["d", " ", "z", " ", RowBox[List["Log", "[", "c", "]"]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["c", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], RowBox[List[SuperscriptBox["d", "3"], " ", SuperscriptBox[RowBox[List["Log", "[", "c", "]"]], "3"]]]], "+", FractionBox[RowBox[List["24", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["d", " ", "z", " ", RowBox[List["Log", "[", "c", "]"]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["c", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], RowBox[List[SuperscriptBox["d", "4"], " ", SuperscriptBox[RowBox[List["Log", "[", "c", "]"]], "4"]]]], "-", FractionBox[RowBox[List["24", " ", RowBox[List["PolyLog", "[", RowBox[List["4", ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["c", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], RowBox[List[SuperscriptBox["d", "4"], " ", SuperscriptBox[RowBox[List["Log", "[", "c", "]"]], "4"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> c </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mo> - </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> c </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> c </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> c </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> c </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <msup> <mi> d </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> c </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> d </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> c </mi> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> <mi> a </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mi> d </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ln /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> d </ci> <apply> <ln /> <ci> c </ci> </apply> <apply> <power /> <ci> c </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> d </ci> <apply> <ln /> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <ln /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> c </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <plus /> <apply> <times /> <ci> d </ci> <ci> z </ci> <apply> <ln /> <ci> c </ci> </apply> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> z </ci> <apply> <power /> <apply> <times /> <apply> <power /> <ci> d </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> c </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <plus /> <apply> <times /> <ci> d </ci> <ci> z </ci> <apply> <ln /> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> d </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> c </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> d </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> c </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox["z_", "3"], SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox["c_", RowBox[List["d_", " ", "z_"]]]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["z", "4"], "-", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "3"]]], RowBox[List["d", " ", RowBox[List["Log", "[", "c", "]"]]]]], "+", FractionBox[RowBox[List["4", " ", "a", " ", SuperscriptBox["z", "3"]]], RowBox[List[RowBox[List["a", " ", "d", " ", RowBox[List["Log", "[", "c", "]"]]]], "+", RowBox[List["b", " ", SuperscriptBox["c", RowBox[List["d", " ", "z"]]], " ", "d", " ", RowBox[List["Log", "[", "c", "]"]]]]]]], "+", FractionBox[RowBox[List["12", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["c", RowBox[List["d", " ", "z"]]]]], "a"]]], "]"]]]], RowBox[List[SuperscriptBox["d", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "c", "]"]], "2"]]]], "-", FractionBox[RowBox[List["4", " ", SuperscriptBox["z", "3"], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["c", RowBox[List["d", " ", "z"]]]]], "a"]]], "]"]]]], RowBox[List["d", " ", RowBox[List["Log", "[", "c", "]"]]]]], "-", FractionBox[RowBox[List["12", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["d", " ", "z", " ", RowBox[List["Log", "[", "c", "]"]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["c", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], RowBox[List[SuperscriptBox["d", "3"], " ", SuperscriptBox[RowBox[List["Log", "[", "c", "]"]], "3"]]]], "+", FractionBox[RowBox[List["24", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["d", " ", "z", " ", RowBox[List["Log", "[", "c", "]"]]]]]], ")"]], " ", RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["c", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], RowBox[List[SuperscriptBox["d", "4"], " ", SuperscriptBox[RowBox[List["Log", "[", "c", "]"]], "4"]]]], "-", FractionBox[RowBox[List["24", " ", RowBox[List["PolyLog", "[", RowBox[List["4", ",", RowBox[List["-", FractionBox[RowBox[List["b", " ", SuperscriptBox["c", RowBox[List["d", " ", "z"]]]]], "a"]]]]], "]"]]]], RowBox[List[SuperscriptBox["d", "4"], " ", SuperscriptBox[RowBox[List["Log", "[", "c", "]"]], "4"]]]]]], RowBox[List["4", " ", SuperscriptBox["a", "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.