Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Summation > Infinite summation





http://functions.wolfram.com/01.03.23.0012.01









  


  










Input Form





Sum[E^(k w)/(a^2 + k^2), {k, 1, Infinity}] == (-((I E^w)/(2 a))) (LerchPhi[E^w, 1, 1 - I a] - LerchPhi[E^w, 1, 1 + I a]) /; Re[w] <= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["k", " ", "w"]]], RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["k", "2"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", "w"], " "]], RowBox[List["2", " ", "a"]]]]], RowBox[List["(", RowBox[List[RowBox[List["LerchPhi", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], ",", "1", ",", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "a"]]]]]], "]"]], "-", RowBox[List["LerchPhi", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], ",", "1", ",", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "a"]]]]]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "w", "]"]], "\[LessEqual]", "0"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> w </mi> </mrow> </msup> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> k </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mi> w </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> &#934; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> w </mi> </msup> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[CapitalPhi]&quot;, &quot;(&quot;, RowBox[List[TagBox[SuperscriptBox[&quot;\[ExponentialE]&quot;, &quot;w&quot;], Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;]]]], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[LerchPhi[Slot[1], Slot[2], Slot[3]]]]] </annotation> </semantics> <mo> - </mo> <semantics> <mrow> <mi> &#934; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> w </mi> </msup> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[CapitalPhi]&quot;, &quot;(&quot;, RowBox[List[TagBox[SuperscriptBox[&quot;\[ExponentialE]&quot;, &quot;w&quot;], Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;+&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;]]]], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[LerchPhi[Slot[1], Slot[2], Slot[3]]]]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> k </ci> <ci> w </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> LerchPhi </ci> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> LerchPhi </ci> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <leq /> <apply> <real /> <ci> w </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "1"]], "\[Infinity]"], FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["k_", " ", "w_"]]], RowBox[List[SuperscriptBox["a_", "2"], "+", SuperscriptBox["k_", "2"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", "w"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["LerchPhi", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], ",", "1", ",", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "a"]]]]]], "]"]], "-", RowBox[List["LerchPhi", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], ",", "1", ",", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "a"]]]]]], "]"]]]], ")"]]]], RowBox[List["2", " ", "a"]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "w", "]"]], "\[LessEqual]", "0"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.