Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Log






Mathematica Notation

Traditional Notation









Elementary Functions > Log[z] > Series representations > Generalized power series > Expansions at generic point z==z0 > Expansions of log(f(z)) at z==z0





http://functions.wolfram.com/01.04.06.0019.01









  


  










Input Form





Log[f[z]] \[Proportional] 2 I Pi Floor[(Pi - Arg[f[Subscript[z, 0]]] - Arg[f[z]/f[Subscript[z, 0]]])/ (2 Pi)] + Log[f[Subscript[z, 0]]] + (Derivative[1][f][Subscript[z, 0]]/f[Subscript[z, 0]]) (z - Subscript[z, 0]) + (1/2) (-(Derivative[1][f][Subscript[z, 0]]^2/f[Subscript[z, 0]]^2) + Derivative[2][f][Subscript[z, 0]]/f[Subscript[z, 0]]) (z - Subscript[z, 0])^2 + (1/6) ((2 Derivative[1][f][Subscript[z, 0]]^3)/ f[Subscript[z, 0]]^3 - (3 Derivative[1][f][Subscript[z, 0]] Derivative[2][f][Subscript[z, 0]])/f[Subscript[z, 0]]^2 + Derivative[3][f][Subscript[z, 0]]/f[Subscript[z, 0]]) (z - Subscript[z, 0])^3 + \[Ellipsis] /; (z -> Subscript[z, 0]) && f[Subscript[z, 0]] != 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Log", "[", RowBox[List["f", "[", "z", "]"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Arg", "[", RowBox[List["f", "[", SubscriptBox["z", "0"], "]"]], "]"]], "-", RowBox[List["Arg", "[", FractionBox[RowBox[List["f", "[", "z", "]"]], RowBox[List["f", "[", SubscriptBox["z", "0"], "]"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["f", "[", SubscriptBox["z", "0"], "]"]], "]"]], "+", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[SuperscriptBox["f", "\[Prime]", Rule[MultilineFunction, None]], "[", SubscriptBox["z", "0"], "]"]]]], RowBox[List["f", "[", SubscriptBox["z", "0"], "]"]]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], " ", "+", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List[SuperscriptBox["f", "\[Prime]", Rule[MultilineFunction, None]], "[", SubscriptBox["z", "0"], "]"]], "2"], SuperscriptBox[RowBox[List["f", "[", SubscriptBox["z", "0"], "]"]], "2"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["f", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", SubscriptBox["z", "0"], "]"]], RowBox[List["f", "[", SubscriptBox["z", "0"], "]"]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]], "+", " ", RowBox[List[FractionBox["1", "6"], RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", SuperscriptBox[RowBox[List[SuperscriptBox["f", "\[Prime]", Rule[MultilineFunction, None]], "[", SubscriptBox["z", "0"], "]"]], "3"]]], SuperscriptBox[RowBox[List["f", "[", SubscriptBox["z", "0"], "]"]], "3"]], "-", FractionBox[RowBox[List["3", RowBox[List[SuperscriptBox["f", "\[Prime]", Rule[MultilineFunction, None]], "[", SubscriptBox["z", "0"], "]"]], " ", RowBox[List[SuperscriptBox["f", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", SubscriptBox["z", "0"], "]"]]]], RowBox[List[" ", SuperscriptBox[RowBox[List["f", "[", SubscriptBox["z", "0"], "]"]], "2"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["f", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", SubscriptBox["z", "0"], "]"]], RowBox[List["f", "[", SubscriptBox["z", "0"], "]"]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "3"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["z", "0"]]], ")"]], "\[And]", RowBox[List[RowBox[List["f", "[", SubscriptBox["z", "0"], "]"]], "\[NotEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> f </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> f </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <mi> f </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> f </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mfrac> <mrow> <mrow> <msup> <mi> f </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> f </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> f </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mrow> <mi> f </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mfrac> <mo> - </mo> <mfrac> <msup> <mrow> <msup> <mi> f </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mi> f </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> f </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <msup> <mrow> <mi> f </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> f </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> f </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mi> f </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mi> f </mi> <semantics> <mrow> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;3&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mrow> <mi> f </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> f </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8800; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ln /> <apply> <ci> f </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <floor /> <apply> <times /> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <times /> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <times /> <apply> <ci> f </ci> <ci> z </ci> </apply> <apply> <power /> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> D </ci> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <ci> D </ci> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </list> </apply> <apply> <power /> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <ci> D </ci> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> D </ci> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> D </ci> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </list> </apply> <apply> <ci> D </ci> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> D </ci> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 3 </cn> </list> </apply> <apply> <power /> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <neq /> <apply> <ci> f </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Log", "[", RowBox[List["f", "[", "z_", "]"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Arg", "[", RowBox[List["f", "[", SubscriptBox["zz", "0"], "]"]], "]"]], "-", RowBox[List["Arg", "[", FractionBox[RowBox[List["f", "[", "z", "]"]], RowBox[List["f", "[", SubscriptBox["zz", "0"], "]"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["f", "[", SubscriptBox["zz", "0"], "]"]], "]"]], "+", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["f", "\[Prime]", Rule[MultilineFunction, None]], "[", SubscriptBox["zz", "0"], "]"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], RowBox[List["f", "[", SubscriptBox["zz", "0"], "]"]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List[SuperscriptBox["f", "\[Prime]", Rule[MultilineFunction, None]], "[", SubscriptBox["zz", "0"], "]"]], "2"], SuperscriptBox[RowBox[List["f", "[", SubscriptBox["zz", "0"], "]"]], "2"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["f", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", SubscriptBox["zz", "0"], "]"]], RowBox[List["f", "[", SubscriptBox["zz", "0"], "]"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]], "+", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List[SuperscriptBox["f", "\[Prime]", Rule[MultilineFunction, None]], "[", SubscriptBox["zz", "0"], "]"]], "3"]]], SuperscriptBox[RowBox[List["f", "[", SubscriptBox["zz", "0"], "]"]], "3"]], "-", FractionBox[RowBox[List["3", " ", RowBox[List[SuperscriptBox["f", "\[Prime]", Rule[MultilineFunction, None]], "[", SubscriptBox["zz", "0"], "]"]], " ", RowBox[List[SuperscriptBox["f", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", SubscriptBox["zz", "0"], "]"]]]], SuperscriptBox[RowBox[List["f", "[", SubscriptBox["zz", "0"], "]"]], "2"]], "+", FractionBox[RowBox[List[SuperscriptBox["f", TagBox[RowBox[List["(", "3", ")"]], Derivative], Rule[MultilineFunction, None]], "[", SubscriptBox["zz", "0"], "]"]], RowBox[List["f", "[", SubscriptBox["zz", "0"], "]"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "3"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["zz", "0"]]], ")"]], "&&", RowBox[List[RowBox[List["f", "[", SubscriptBox["zz", "0"], "]"]], "\[NotEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.