Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Log






Mathematica Notation

Traditional Notation









Elementary Functions > Log[z] > Differentiation > Fractional integro-differentiation





http://functions.wolfram.com/01.04.20.0018.01









  


  










Input Form





D[z^a Log[z], {z, \[Alpha]}] == Piecewise[{{(-1)^(\[Alpha] - a - 1) Gamma[a + 1] (\[Alpha] - a - 1)! z^(a - \[Alpha]), Element[\[Alpha] - a, Integers] && \[Alpha] - a > 0}, {((-1)^(a - 1)/(2 (-a - 1)! Gamma[1 + a - \[Alpha]])) (Log[z]^2 + 2 Log[z] (PolyGamma[-a] - PolyGamma[1 + a - \[Alpha]]) + Pi^2/3 + (PolyGamma[-a] - PolyGamma[1 + a - \[Alpha]])^2 - PolyGamma[1, -a] - PolyGamma[1, 1 + a - \[Alpha]]) z^(a - \[Alpha]), Element[-a, Integers] && -a > 0}}, (Gamma[1 + a]/Gamma[1 + a - \[Alpha]]) (Log[z] + PolyGamma[1 + a] - PolyGamma[1 + a - \[Alpha]]) z^(a - \[Alpha])]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["(", RowBox[List[SuperscriptBox["z", "a"], " ", RowBox[List["Log", "[", "z", "]"]]]], ")"]]]], "\[Equal]", RowBox[List["Piecewise", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["\[Alpha]", "-", "a", "-", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "1"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["\[Alpha]", "-", "a", "-", "1"]], ")"]], "!"]], SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]], ",", RowBox[List[RowBox[List["Element", "[", RowBox[List[RowBox[List["\[Alpha]", "-", "a"]], ",", "Integers"]], "]"]], "\[And]", RowBox[List[RowBox[List["\[Alpha]", "-", "a"]], ">", "0"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "-", "1"]]], RowBox[List["2", " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", "1"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"], "+", RowBox[List["2", RowBox[List["Log", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], ")"]]]], "+", FractionBox[SuperscriptBox["\[Pi]", "2"], "3"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], ")"]], "2"], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]], SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]], ",", RowBox[List[RowBox[List["Element", "[", RowBox[List[RowBox[List["-", "a"]], ",", "Integers"]], "]"]], "\[And]", RowBox[List[RowBox[List["-", "a"]], ">", "0"]]]]]], "}"]]]], "}"]], ",", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], ")"]], SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]]]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mi> a </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mo> &#62305; </mo> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> </mtd> <mtd> <mrow> <mrow> <mi> &#945; </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mn> 3 </mn> </mfrac> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> </mtd> <mtd> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> a </mi> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> </mtd> <mtd> <semantics> <mi> True </mi> <annotation encoding='Mathematica'> TagBox[&quot;True&quot;, &quot;PiecewiseDefault&quot;, Rule[AutoDelete, False], Rule[DeletionWarning, True]] </annotation> </semantics> </mtd> </mtr> </mtable> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> a </ci> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> <piecewise> <piece> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <plus /> <ci> &#945; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> </apply> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </piece> <otherwise> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <ci> z </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </otherwise> </piecewise> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["z_", "a_"], " ", RowBox[List["Log", "[", "z_", "]"]]]], ")"]]]], "]"]], "\[RuleDelayed]", RowBox[List["\[Piecewise]", GridBox[List[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["\[Alpha]", "-", "a", "-", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "1"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["\[Alpha]", "-", "a", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]], RowBox[List[RowBox[List[RowBox[List["\[Alpha]", "-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["\[Alpha]", "-", "a"]], ">", "0"]]]]], List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "-", "1"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"], "+", RowBox[List["2", " ", RowBox[List["Log", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], ")"]]]], "+", FractionBox[SuperscriptBox["\[Pi]", "2"], "3"], "+", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["-", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], ")"]], "2"], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["-", "a"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "a", "-", "\[Alpha]"]]]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]], RowBox[List["2", " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", "1"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], ">", "0"]]]]], List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["a", "-", "\[Alpha]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "\[Alpha]"]], "]"]]], TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]]]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.