Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Log






Mathematica Notation

Traditional Notation









Elementary Functions > Log[z] > Integration > Definite integration > Involving the direct function





http://functions.wolfram.com/01.04.21.0045.01









  


  










Input Form





Integrate[(Log[t]^m Log[1 - t]^n)/t, {t, 0, 1}] == Limit[ Limit[ D[D[(1/\[Mu]) Exp[-Sum[Sum[(((-1)^(p + q) \[Lambda]^p \[Mu]^q (p + q - 1)!)/(p! q!)) Zeta[p + q], {q, 1, m + 1}], {p, 1, n + 1}]], {\[Mu], m}], {\[Lambda], n}], \[Mu] -> 0], \[Lambda] -> 0] /; Element[m, Integers] && m >= 0 && Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Log", "[", "t", "]"]], "m"], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["1", "-", "t"]], "]"]], "n"]]], "t"], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List["Limit", "[", RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List["D", "[", RowBox[List[RowBox[List["D", "[", RowBox[List[RowBox[List[FractionBox["1", "\[Mu]"], RowBox[List["Exp", "[", RowBox[List["-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], RowBox[List["n", "+", "1"]]], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "1"]], RowBox[List["m", "+", "1"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "+", "q"]]], SuperscriptBox["\[Lambda]", "p"], SuperscriptBox["\[Mu]", "q"], RowBox[List[RowBox[List["(", RowBox[List["p", "+", "q", "-", "1"]], ")"]], "!"]], " "]], RowBox[List[RowBox[List["p", "!"]], RowBox[List["q", "!"]]]]], RowBox[List["Zeta", "[", RowBox[List["p", "+", "q"]], "]"]]]]]], ")"]]]]]], "]"]]]], ",", RowBox[List["{", RowBox[List["\[Mu]", ",", "m"]], "}"]]]], "]"]], ",", RowBox[List["{", RowBox[List["\[Lambda]", ",", "n"]], "}"]]]], "]"]], ",", RowBox[List["\[Mu]", "\[Rule]", "0"]]]], "]"]], ",", RowBox[List["\[Lambda]", "\[Rule]", "0"]]]], "]"]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mn> 1 </mn> </msubsup> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> log </mi> <mi> m </mi> </msup> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mi> n </mi> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> t </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <munder> <mi> lim </mi> <mrow> <mi> &#955; </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> </munder> <mo> &#8290; </mo> <mtext> &#8201; </mtext> <mrow> <munder> <mi> lim </mi> <mrow> <mi> &#956; </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> </munder> <mo> &#8290; </mo> <mtext> &#8201; </mtext> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> m </mi> </msup> <mfrac> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> + </mo> <mi> q </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#955; </mi> <mi> p </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#956; </mi> <mi> q </mi> </msup> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[RowBox[List[&quot;p&quot;, &quot;+&quot;, &quot;q&quot;]], Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> p </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> q </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> &#956; </mi> </mfrac> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#956; </mi> <mi> m </mi> </msup> </mrow> </mfrac> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#955; </mi> <mi> n </mi> </msup> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <cn type='integer'> 1 </cn> </uplimit> <apply> <times /> <apply> <power /> <apply> <ln /> <ci> t </ci> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> </apply> </apply> <ci> n </ci> </apply> <apply> <power /> <ci> t </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <limit /> <bvar> <ci> &#955; </ci> </bvar> <condition> <apply> <tendsto /> <ci> &#955; </ci> <cn type='integer'> 0 </cn> </apply> </condition> <apply> <limit /> <bvar> <ci> &#956; </ci> </bvar> <condition> <apply> <tendsto /> <ci> &#956; </ci> <cn type='integer'> 0 </cn> </apply> </condition> <apply> <partialdiff /> <bvar> <ci> &#955; </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <partialdiff /> <bvar> <ci> &#956; </ci> <degree> <ci> m </ci> </degree> </bvar> <apply> <times /> <apply> <exp /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <ci> q </ci> </apply> </apply> <apply> <power /> <ci> &#955; </ci> <ci> p </ci> </apply> <apply> <power /> <ci> &#956; </ci> <ci> q </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> p </ci> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> p </ci> <ci> q </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> p </ci> </apply> <apply> <factorial /> <ci> q </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> &#956; </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "1"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Log", "[", "t_", "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["1", "-", "t_"]], "]"]], "n_"]]], "t_"], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Lambda]", ",", "n"]], "}"]]]]], RowBox[List["(", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Mu]", ",", "m"]], "}"]]]]], FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], RowBox[List["n", "+", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "1"]], RowBox[List["m", "+", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "+", "q"]]], " ", SuperscriptBox["\[Lambda]", "p"], " ", SuperscriptBox["\[Mu]", "q"], " ", RowBox[List[RowBox[List["(", RowBox[List["p", "+", "q", "-", "1"]], ")"]], "!"]]]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List["p", "+", "q"]], "]"]]]], RowBox[List[RowBox[List["p", "!"]], " ", RowBox[List["q", "!"]]]]]]]]]]]], "\[Mu]"]]], ")"]]]], ",", RowBox[List["\[Mu]", "\[Rule]", "0"]]]], "]"]], ",", RowBox[List["\[Lambda]", "\[Rule]", "0"]]]], "]"]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.