Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Log






Mathematica Notation

Traditional Notation









Elementary Functions > Log[z] > Integration > Definite integration > Involving the direct function





http://functions.wolfram.com/01.04.21.0057.01









  


  










Input Form





Integrate[Log[(1/2) Sin[t]]^n Tan[t/2], {t, 0, Pi/2}] == (-(1/(n + 1))) Log[1/2]^(n + 1) + (1/2^(n + 1)) Limit[D[(1/p) (Gamma[1 + p]^2/Gamma[1 + 2 p] - 1), {p, n}], p -> 0] /; Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", FractionBox["\[Pi]", "2"]], RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["Sin", "[", "t", "]"]]]], "]"]], "n"], RowBox[List["Tan", "[", FractionBox["t", "2"], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["n", "+", "1"]]]]], SuperscriptBox[RowBox[List["Log", "[", FractionBox["1", "2"], "]"]], RowBox[List["n", "+", "1"]]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox["2", RowBox[List["n", "+", "1"]]]], RowBox[List["Limit", "[", RowBox[List[RowBox[List["D", "[", RowBox[List[RowBox[List[FractionBox["1", "p"], RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "p"]], "]"]], "2"], RowBox[List["Gamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "p"]]]], "]"]]], "-", "1"]], ")"]]]], ",", RowBox[List["{", RowBox[List["p", ",", "n"]], "}"]]]], "]"]], ",", RowBox[List["p", "\[Rule]", "0"]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </msubsup> <mrow> <mrow> <mrow> <msup> <mi> log </mi> <mi> n </mi> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> t </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <munder> <mi> lim </mi> <mrow> <mi> p </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> </munder> <mo> &#8290; </mo> <mtext> &#8201; </mtext> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mfrac> <mrow> <mfrac> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </mfrac> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> p </mi> <mi> n </mi> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> log </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <apply> <ln /> <apply> <times /> <apply> <sin /> <ci> t </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> n </ci> </apply> <apply> <tan /> <apply> <times /> <ci> t </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <limit /> <bvar> <ci> p </ci> </bvar> <condition> <apply> <tendsto /> <ci> p </ci> <cn type='integer'> 0 </cn> </apply> </condition> <apply> <partialdiff /> <bvar> <ci> p </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <ln /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", FractionBox["\[Pi]", "2"]], RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Log", "[", FractionBox[RowBox[List["Sin", "[", "t_", "]"]], "2"], "]"]], "n_"], " ", RowBox[List["Tan", "[", FractionBox["t_", "2"], "]"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["Log", "[", FractionBox["1", "2"], "]"]], RowBox[List["n", "+", "1"]]], RowBox[List["n", "+", "1"]]]]], "+", FractionBox[RowBox[List["Limit", "[", RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["p", ",", "n"]], "}"]]]]], FractionBox[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "p"]], "]"]], "2"], RowBox[List["Gamma", "[", RowBox[List["1", "+", RowBox[List["2", " ", "p"]]]], "]"]]], "-", "1"]], "p"]]], ",", RowBox[List["p", "\[Rule]", "0"]]]], "]"]], SuperscriptBox["2", RowBox[List["n", "+", "1"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.