Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Log






Mathematica Notation

Traditional Notation









Elementary Functions > Log[z] > Integration > Definite integration > Involving related functions





http://functions.wolfram.com/01.04.21.0077.01









  


  










Input Form





Integrate[Log[t]^n/E^t, {t, 0, Infinity}] == (-EulerGamma) Integrate[Log[t]^(n - 1)/E^t, {t, 0, Infinity}] + (n - 1)! Sum[(((-1)^k Zeta[k])/(n - k)!) Integrate[Log[t]^(n - k)/E^t, {t, 0, Infinity}], {k, 2, n}] /; Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "t"]]], " ", SuperscriptBox[RowBox[List["Log", "[", "t", "]"]], "n"]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", "EulerGamma"]], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "t"]]], " ", SuperscriptBox[RowBox[List["Log", "[", "t", "]"]], RowBox[List["n", "-", "1"]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], "+", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["Zeta", "[", "k", "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "t"]]], " ", SuperscriptBox[RowBox[List["Log", "[", "t", "]"]], RowBox[List["n", "-", "k"]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#8734; </mi> </msubsup> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> t </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mi> n </mi> </msup> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;k&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#8734; </mi> </msubsup> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> t </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#8734; </mi> </msubsup> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> t </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> t </ci> </apply> <ci> n </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Zeta </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> t </ci> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <eulergamma /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> t </ci> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "t_"]]], " ", SuperscriptBox[RowBox[List["Log", "[", "t_", "]"]], "n_"]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "EulerGamma"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "t"]]], " ", SuperscriptBox[RowBox[List["Log", "[", "t", "]"]], RowBox[List["n", "-", "1"]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], "+", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Zeta", "[", "k", "]"]]]], ")"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "t"]]], " ", SuperscriptBox[RowBox[List["Log", "[", "t", "]"]], RowBox[List["n", "-", "k"]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], "!"]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.