Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Power






Mathematica Notation

Traditional Notation









Elementary Functions > Power[z,a] > Complex characteristics > Conjugate value





http://functions.wolfram.com/01.02.19.0040.01









  


  










Input Form





Conjugate[z^a] == (Abs[z]^Re[a] (Cos[Re[a] ArcTan[Re[z], Im[z]] + Im[a] Log[Abs[z]]] - I Sin[Re[a] ArcTan[Re[z], Im[z]] + Im[a] Log[Abs[z]]]))/ E^(Im[a] ArcTan[Re[z], Im[z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Conjugate", "[", SuperscriptBox["z", "a"], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["Im", "[", "a", "]"]]]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ",", RowBox[List["Im", "[", "z", "]"]]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["Abs", "[", "z", "]"]], RowBox[List["Re", "[", "a", "]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List[RowBox[List["Re", "[", "a", "]"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ",", RowBox[List["Im", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[RowBox[List["Im", "[", "a", "]"]], " ", RowBox[List["Log", "[", RowBox[List["Abs", "[", "z", "]"]], "]"]]]]]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List[RowBox[List["Re", "[", "a", "]"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ",", RowBox[List["Im", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[RowBox[List["Im", "[", "a", "]"]], " ", RowBox[List["Log", "[", RowBox[List["Abs", "[", "z", "]"]], "]"]]]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mover> <msup> <mi> z </mi> <mi> a </mi> </msup> <mo> _ </mo> </mover> <mo> &#10869; </mo> <mrow> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> OverBar </ci> <apply> <power /> <ci> z </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <exp /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <imaginary /> <ci> a </ci> </apply> </apply> <apply> <arctan /> <apply> <real /> <ci> z </ci> </apply> <apply> <imaginary /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <abs /> <ci> z </ci> </apply> <apply> <real /> <ci> a </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <apply> <plus /> <apply> <times /> <apply> <imaginary /> <ci> a </ci> </apply> <apply> <ln /> <apply> <abs /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <arctan /> <apply> <real /> <ci> z </ci> </apply> <apply> <imaginary /> <ci> z </ci> </apply> </apply> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <sin /> <apply> <plus /> <apply> <times /> <apply> <imaginary /> <ci> a </ci> </apply> <apply> <ln /> <apply> <abs /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <arctan /> <apply> <real /> <ci> z </ci> </apply> <apply> <imaginary /> <ci> z </ci> </apply> </apply> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Conjugate", "[", SuperscriptBox["z_", "a_"], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["Im", "[", "a", "]"]]]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ",", RowBox[List["Im", "[", "z", "]"]]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["Abs", "[", "z", "]"]], RowBox[List["Re", "[", "a", "]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List[RowBox[List["Re", "[", "a", "]"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ",", RowBox[List["Im", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[RowBox[List["Im", "[", "a", "]"]], " ", RowBox[List["Log", "[", RowBox[List["Abs", "[", "z", "]"]], "]"]]]]]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List[RowBox[List["Re", "[", "a", "]"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ",", RowBox[List["Im", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[RowBox[List["Im", "[", "a", "]"]], " ", RowBox[List["Log", "[", RowBox[List["Abs", "[", "z", "]"]], "]"]]]]]], "]"]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.