Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Power






Mathematica Notation

Traditional Notation









Elementary Functions > Power[z,a] > Differentiation > Fractional integro-differentiation > With respect to z





http://functions.wolfram.com/01.02.20.0018.01









  


  










Input Form





D[(c z^2 + b)^a, {z, \[Alpha]}] == ((b^a/(z^\[Alpha] Gamma[1 - \[Alpha]])) AppellF1[-\[Alpha], -a, -a, 1 - \[Alpha], z/(Sqrt[-(b/c)] + z), -(z/(Sqrt[-(b/c)] - z))])/((Sqrt[-(b/c)]/(Sqrt[-(b/c)] - z))^a (Sqrt[-(b/c)]/(Sqrt[-(b/c)] + z))^a) /; !(Element[\[Alpha], Integers] && \[Alpha] > 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "+", "b"]], ")"]], "a"]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["b", "a"], " ", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]]]], RowBox[List[" ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]]]], SuperscriptBox[RowBox[List["(", FractionBox[SqrtBox[RowBox[List["-", FractionBox["b", "c"]]]], RowBox[List[SqrtBox[RowBox[List["-", FractionBox["b", "c"]]]], "-", "z"]]], ")"]], RowBox[List["-", "a"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SqrtBox[RowBox[List["-", FractionBox["b", "c"]]]], RowBox[List[SqrtBox[RowBox[List["-", FractionBox["b", "c"]]]], "+", "z"]]], ")"]], RowBox[List["-", "a"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", RowBox[List["-", "a"]], ",", RowBox[List["-", "a"]], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", FractionBox["z", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["b", "c"]]]], "+", "z"]]], ",", RowBox[List["-", FractionBox["z", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["b", "c"]]]], "-", "z"]]]]]]], "]"]]]]]], "/;", RowBox[List["Not", "[", RowBox[List[RowBox[List["\[Alpha]", "\[Element]", "Integers"]], "\[And]", RowBox[List["\[Alpha]", ">", "0"]]]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mi> a </mi> </msup> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mi> b </mi> <mi> a </mi> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> </mrow> </msqrt> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> </mrow> </msqrt> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> </mrow> </msqrt> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ; </mo> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mi> c </mi> </mfrac> </mrow> </msqrt> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#945; </mi> <mo> &#8713; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> b </ci> <ci> a </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> AppellF1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <ci> &#945; </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "+", "b_"]], ")"]], "a_"]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "a"], " ", SuperscriptBox["z", RowBox[List["-", "\[Alpha]"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SqrtBox[RowBox[List["-", FractionBox["b", "c"]]]], RowBox[List[SqrtBox[RowBox[List["-", FractionBox["b", "c"]]]], "-", "z"]]], ")"]], RowBox[List["-", "a"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SqrtBox[RowBox[List["-", FractionBox["b", "c"]]]], RowBox[List[SqrtBox[RowBox[List["-", FractionBox["b", "c"]]]], "+", "z"]]], ")"]], RowBox[List["-", "a"]]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", RowBox[List["-", "a"]], ",", RowBox[List["-", "a"]], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", FractionBox["z", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["b", "c"]]]], "+", "z"]]], ",", RowBox[List["-", FractionBox["z", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["b", "c"]]]], "-", "z"]]]]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]], "/;", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List["\[Alpha]", "\[Element]", "Integers"]], "&&", RowBox[List["\[Alpha]", ">", "0"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.