Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Power






Mathematica Notation

Traditional Notation









Elementary Functions > Power[z,a] > Integration > Definite integration > Involving the direct function





http://functions.wolfram.com/01.02.21.0018.01









  


  










Input Form





Integrate[1/(Sqrt[1 - t^2] Sqrt[1 - m t^2]), {t, 0, Infinity}] == EllipticK[m] - (I/Sqrt[-m]) EllipticK[1/m] + (1/Sqrt[-m]) (1 - Sqrt[(m - 1)/m] Sqrt[m/(m - 1)]) EllipticK[(m - 1)/m]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["t", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox["t", "2"]]]]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "-", RowBox[List[FractionBox["\[ImaginaryI]", SqrtBox[RowBox[List["-", "m"]]]], RowBox[List["EllipticK", "[", FractionBox["1", "m"], "]"]]]], "+", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["-", "m"]]]], RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox[FractionBox[RowBox[List["m", "-", "1"]], "m"]], " ", SqrtBox[FractionBox["m", RowBox[List["m", "-", "1"]]]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List["m", "-", "1"]], "m"], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#8734; </mi> </msubsup> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mi> &#8520; </mi> <msqrt> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> m </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msqrt> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mi> m </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> EllipticK </ci> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["t_", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m_", " ", SuperscriptBox["t_", "2"]]]]]]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["EllipticK", "[", "m", "]"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["EllipticK", "[", FractionBox["1", "m"], "]"]]]], SqrtBox[RowBox[List["-", "m"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox[FractionBox[RowBox[List["m", "-", "1"]], "m"]], " ", SqrtBox[FractionBox["m", RowBox[List["m", "-", "1"]]]]]]]], ")"]], " ", RowBox[List["EllipticK", "[", FractionBox[RowBox[List["m", "-", "1"]], "m"], "]"]]]], SqrtBox[RowBox[List["-", "m"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.