Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Power






Mathematica Notation

Traditional Notation









Elementary Functions > Power[z,a] > Integral transforms > Hankel transforms





http://functions.wolfram.com/01.02.22.0028.01









  


  










Input Form





HankelTransform[t^a, {t, \[Nu]}, z] == (2^(1/2 + a) z^(-1 - a) Gamma[(1/4) (3 + 2 a + 2 \[Nu])])/ Gamma[(1/4) (1 - 2 a + 2 \[Nu])] /; z > 0 && Re[a + \[Nu]] > -(3/2) && Re[a] < 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HankelTransform", "[", RowBox[List[SuperscriptBox["t", "a"], ",", RowBox[List["{", RowBox[List["t", ",", "\[Nu]"]], "}"]], ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], "+", "a"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "a"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]]]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "\[Nu]"]], "]"]], ">", RowBox[List["-", FractionBox["3", "2"]]]]], "\[And]", RowBox[List[RowBox[List["Re", "[", "a", "]"]], "<", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msub> <mi> &#8459; </mi> <mrow> <mi> t </mi> <mo> ; </mo> <mi> &#957; </mi> </mrow> </msub> <mo> [ </mo> <msup> <mi> t </mi> <mi> a </mi> </msup> <mo> ] </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> z </mi> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> &#8459; </ci> <apply> <ci> CompoundExpression </ci> <ci> t </ci> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <ci> t </ci> <ci> a </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <apply> <real /> <apply> <plus /> <ci> a </ci> <ci> &#957; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <lt /> <apply> <real /> <ci> a </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HankelTransform", "[", RowBox[List[SuperscriptBox["t_", "a_"], ",", RowBox[List["{", RowBox[List["t_", ",", "\[Nu]_"]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], "+", "a"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "a"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "\[Nu]"]]]], ")"]]]], "]"]]], "/;", RowBox[List[RowBox[List["z", ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", RowBox[List["a", "+", "\[Nu]"]], "]"]], ">", RowBox[List["-", FractionBox["3", "2"]]]]], "&&", RowBox[List[RowBox[List["Re", "[", "a", "]"]], "<", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.