Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
ProductLog






Mathematica Notation

Traditional Notation









Elementary Functions > ProductLog[z] > Differentiation > Symbolic differentiation





http://functions.wolfram.com/01.31.20.0004.01









  


  










Input Form





D[ProductLog[z], {z, n}] == (Exp[(-n) ProductLog[z]]/ (1 + ProductLog[z])^(2 n - 1)) \[GothicCapitalP][n, ProductLog[z]] /; \[GothicCapitalP][n + 1, w] == (-(n w + 3 n - 1)) \[GothicCapitalP][n, w] + (1 + w) Derivative[0, 1][\[GothicCapitalP]][n, w] && \[GothicCapitalP][1, w] == 1 && Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]], RowBox[List["ProductLog", "[", "z", "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["Exp", "[", RowBox[List[RowBox[List["-", "n"]], " ", RowBox[List["ProductLog", "[", "z", "]"]]]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["ProductLog", "[", "z", "]"]]]], ")"]], RowBox[List[RowBox[List["2", "n"]], "-", "1"]]]], RowBox[List["\[GothicCapitalP]", "[", RowBox[List["n", ",", RowBox[List["ProductLog", "[", "z", "]"]]]], "]"]]]]]], "/;", " ", RowBox[List[RowBox[List[RowBox[List["\[GothicCapitalP]", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", "w"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["n", " ", "w"]], "+", RowBox[List["3", " ", "n"]], "-", "1"]], ")"]]]], RowBox[List["\[GothicCapitalP]", "[", RowBox[List["n", ",", "w"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "w"]], ")"]], RowBox[List[SuperscriptBox["\[GothicCapitalP]", TagBox[RowBox[List["(", RowBox[List["0", ",", "1"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["n", ",", "w"]], "]"]]]]]]]], "\[And]", RowBox[List[RowBox[List["\[GothicCapitalP]", "[", RowBox[List["1", ",", "w"]], "]"]], "\[Equal]", "1"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mrow> <mi> W </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> &#8290; </mo> <mrow> <mi> W </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> Pol </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mrow> <mi> W </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> W </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Pol </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> w </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> Pol </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;0&quot;, &quot;,&quot;, &quot;1&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Pol </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Pol </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <ci> W </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> W </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Pol </ci> <ci> n </ci> <apply> <ci> W </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <ci> W </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Pol </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <ci> w </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> w </ci> <cn type='integer'> 1 </cn> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 1 </cn> </list> <ci> Pol </ci> </apply> <ci> n </ci> <ci> w </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> w </ci> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Pol </ci> <ci> n </ci> <ci> w </ci> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Pol </ci> <cn type='integer'> 1 </cn> <ci> w </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "n_"]], "}"]]]]], RowBox[List["ProductLog", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "n"]], " ", RowBox[List["ProductLog", "[", "z", "]"]]]]], " ", RowBox[List["\[GothicCapitalP]", "[", RowBox[List["n", ",", RowBox[List["ProductLog", "[", "z", "]"]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["ProductLog", "[", "z", "]"]]]], ")"]], RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["\[GothicCapitalP]", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", "w"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["n", " ", "w"]], "+", RowBox[List["3", " ", "n"]], "-", "1"]], ")"]]]], " ", RowBox[List["\[GothicCapitalP]", "[", RowBox[List["n", ",", "w"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "w"]], ")"]], " ", RowBox[List[SuperscriptBox["\[GothicCapitalP]", TagBox[RowBox[List["(", RowBox[List["0", ",", "1"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["n", ",", "w"]], "]"]]]]]]]], "&&", RowBox[List[RowBox[List["\[GothicCapitalP]", "[", RowBox[List["1", ",", "w"]], "]"]], "\[Equal]", "1"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.