Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sec






Mathematica Notation

Traditional Notation









Elementary Functions > Sec[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving algebraic functions of the direct function > Involving (a+b sec(c z))beta





http://functions.wolfram.com/01.11.21.0092.01









  


  










Input Form





Integrate[Sec[c z]/Sqrt[a + b Sec[c z]], z] == ((Cot[(c z)/2]^2)^(3/2) Sqrt[((b + a Cos[c z]) Csc[(c z)/2]^2)/b] EllipticF[ArcSin[Sqrt[2]/Sqrt[1 - Sec[c z]]], (a + b)/(2 b)] (1 - Sec[c z])^(3/2) Tan[(c z)/2])/(c (1 + Sec[c z]) Sqrt[a + b Sec[c z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]], " "]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cot", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"], ")"]], RowBox[List["3", "/", "2"]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"]]], "b"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", FractionBox[SqrtBox["2"], SqrtBox[RowBox[List["1", "-", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]], ",", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["2", " ", "b"]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <msup> <mi> cot </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mi> b </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mn> 2 </mn> </msqrt> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <power /> <apply> <cot /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <csc /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticF </ci> <apply> <arcsin /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sec", "[", RowBox[List["c_", " ", "z_"]], "]"]], SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sec", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Cot", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"], ")"]], RowBox[List["3", "/", "2"]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"]]], "b"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", FractionBox[SqrtBox["2"], SqrtBox[RowBox[List["1", "-", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]], ",", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["2", " ", "b"]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-10-15





© 1998- Wolfram Research, Inc.