Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sec






Mathematica Notation

Traditional Notation









Elementary Functions > Sec[z] > Representations through equivalent functions > With inverse function





http://functions.wolfram.com/01.11.27.0063.01









  


  










Input Form





ArcSec[Sec[z]] == (-1)^k (z - Pi (k + 1)) + (Pi/2) (1 + (-1)^k) /; (k Pi < Re[z] < (k + 1) Pi || (Re[z] == k Pi && Im[z] >= 0) || (Re[z] == (k + 1) Pi && Im[z] <= 0)) && Element[k, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcSec", "[", RowBox[List["Sec", "[", "z", "]"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["(", RowBox[List["z", "-", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]], ")"]]]], " ", "+", RowBox[List[FractionBox["\[Pi]", "2"], RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["k", " ", "\[Pi]"]], "<", RowBox[List["Re", "[", "z", "]"]], "<", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "\[Pi]"]]]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[Equal]", RowBox[List["k", " ", "\[Pi]"]]]], "\[And]", RowBox[List[RowBox[List["Im", "[", "z", "]"]], "\[GreaterEqual]", "0"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "\[Pi]"]]]], "\[And]", RowBox[List[RowBox[List["Im", "[", "z", "]"]], "\[LessEqual]", "0"]]]], ")"]]]], ")"]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> &lt; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8805; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <mi> &#8484; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <arcsec /> <apply> <sec /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <or /> <apply> <lt /> <apply> <times /> <ci> k </ci> <pi /> </apply> <apply> <real /> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <pi /> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <real /> <ci> z </ci> </apply> <apply> <times /> <ci> k </ci> <pi /> </apply> </apply> <apply> <geq /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <real /> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <pi /> </apply> </apply> <apply> <leq /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <ci> &#8484; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSec", "[", RowBox[List["Sec", "[", "z_", "]"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["(", RowBox[List["z", "-", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["k", " ", "\[Pi]"]], "<", RowBox[List["Re", "[", "z", "]"]], "<", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", "\[Pi]"]]]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[Equal]", RowBox[List["k", " ", "\[Pi]"]]]], "&&", RowBox[List[RowBox[List["Im", "[", "z", "]"]], "\[GreaterEqual]", "0"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", "\[Pi]"]]]], "&&", RowBox[List[RowBox[List["Im", "[", "z", "]"]], "\[LessEqual]", "0"]]]], ")"]]]], ")"]], "&&", RowBox[List["k", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21





© 1998- Wolfram Research, Inc.