Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sech






Mathematica Notation

Traditional Notation









Elementary Functions > Sech[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic and trigonometric functions > Involving powers of sin and powers of sinh > Involving sinm(a z)sinhu(b z) sech( c z)





http://functions.wolfram.com/01.24.21.0202.01









  


  










Input Form





Integrate[Sin[a z]^m Sinh[b z]^u Sech[c z], z] == (1/c) I^u 2^(1 - m - u) ArcTan[Tanh[(c z)/2]] Binomial[m, m/2] Binomial[u, u/2] (1 - Mod[m, 2]) (1 - Mod[u, 2]) + I^u 2^(1 - m - u) Binomial[u, u/2] (1 - Mod[u, 2]) Sum[(-1)^k Binomial[m, k] ((E^((I m Pi)/2 + (c + 2 I a k - I a m) z) Hypergeometric2F1[1, (c + 2 I a k - I a m)/(2 c), (3 c + 2 I a k - I a m)/(2 c), -E^(2 c z)])/(c + 2 I a k - I a m) + (E^((-(1/2)) I m Pi + (c + I a (-2 k + m)) z) Hypergeometric2F1[1, (c - 2 I a k + I a m)/(2 c), (3 c - 2 I a k + I a m)/(2 c), -E^(2 c z)])/(c + I a (-2 k + m))), {k, 0, Floor[(1/2) (-1 + m)]}] + 2^(1 - m - u) Binomial[m, m/2] (1 - Mod[m, 2]) Sum[(-1)^j Binomial[u, j] ((1/(c + 2 b j - b u)) ((-1)^u E^((c + 2 b j - b u) z) Hypergeometric2F1[1, (c + 2 b j - b u)/(2 c), (3 c + 2 b j - b u)/ (2 c), -E^(2 c z)]) + (1/(c + b (-2 j + u))) (E^((c - 2 b j + b u) z) Hypergeometric2F1[1, (c - 2 b j + b u)/ (2 c), (3 c - 2 b j + b u)/(2 c), -E^(2 c z)])), {j, 0, Floor[(1/2) (-1 + u)]}] + 2^(1 - m - u) Sum[(-1)^k Binomial[m, k] Sum[(-1)^j Binomial[u, j] (((-1)^u E^((1/2) I Pi m + (c + 2 b j + 2 I a k - I a m - b u) z) Hypergeometric2F1[1, (c + 2 b j + 2 I a k - I a m - b u)/(2 c), (3 c + 2 b j + 2 I a k - I a m - b u)/(2 c), -E^(2 c z)])/ (c + 2 b j + 2 I a k - I a m - b u) + ((-1)^u E^((-(1/2)) I Pi m + (c + 2 b j - 2 I a k + I a m - b u) z) Hypergeometric2F1[1, (c + 2 b j - 2 I a k + I a m - b u)/(2 c), (3 c + 2 b j - 2 I a k + I a m - b u)/(2 c), -E^(2 c z)])/ (c + 2 b j - 2 I a k + I a m - b u) + (E^((1/2) I Pi m + (c - 2 b j + 2 I a k - I a m + b u) z) Hypergeometric2F1[1, (c - 2 b j + 2 I a k - I a m + b u)/(2 c), (3 c - 2 b j + 2 I a k - I a m + b u)/(2 c), -E^(2 c z)])/ (c - 2 b j + 2 I a k - I a m + b u) + (E^((-(1/2)) I Pi m + (c - 2 b j - 2 I a k + I a m + b u) z) Hypergeometric2F1[1, (c - 2 b j - 2 I a k + I a m + b u)/(2 c), (3 c - 2 b j - 2 I a k + I a m + b u)/(2 c), -E^(2 c z)])/ (c - 2 b j - 2 I a k + I a m + b u)), {j, 0, Floor[(1/2) (-1 + u)]}], {k, 0, Floor[(1/2) (-1 + m)]}] /; Element[m, Integers] && m > 0 && Element[u, Integers] && u > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]], "m"], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]], "u"], " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "c"], SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["ArcTan", "[", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["b", " ", "u"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "m"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "m"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "m"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "m"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], ")"]]]]]], ")"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["u", "\[Element]", "Integers"]], "\[And]", RowBox[List["u", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <msup> <mi> sin </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mi> u </mi> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> &#8520; </mi> <mi> u </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> u </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> u </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`u </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> c </mi> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[FractionBox[&quot;m&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> u </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> u </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;u&quot;, Identity]], List[TagBox[FractionBox[&quot;u&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8520; </mi> <mi> u </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> u </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> u </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> u </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;u&quot;, Identity]], List[TagBox[FractionBox[&quot;u&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> u </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`u </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;k&quot;]], &quot;+&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;m&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;c&quot;]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;k&quot;]], &quot;+&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;m&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;k&quot;]], &quot;-&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;m&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;c&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;k&quot;]], &quot;-&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;m&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> u </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[FractionBox[&quot;m&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> u </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;u&quot;, Identity]], List[TagBox[&quot;j&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;, &quot; &quot;, &quot;j&quot;]], &quot;+&quot;, RowBox[List[&quot;b&quot;, &quot; &quot;, &quot;u&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;c&quot;]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;, &quot; &quot;, &quot;j&quot;]], &quot;+&quot;, RowBox[List[&quot;b&quot;, &quot; &quot;, &quot;u&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> u </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> u </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;, &quot; &quot;, &quot;j&quot;]], &quot;-&quot;, RowBox[List[&quot;b&quot;, &quot; &quot;, &quot;u&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;c&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;, &quot; &quot;, &quot;j&quot;]], &quot;-&quot;, RowBox[List[&quot;b&quot;, &quot; &quot;, &quot;u&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> u </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> u </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;u&quot;, Identity]], List[TagBox[&quot;j&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;, &quot; &quot;, &quot;j&quot;]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;k&quot;]], &quot;+&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;m&quot;]], &quot;+&quot;, RowBox[List[&quot;b&quot;, &quot; &quot;, &quot;u&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;c&quot;]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;, &quot; &quot;, &quot;j&quot;]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;k&quot;]], &quot;+&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;m&quot;]], &quot;+&quot;, RowBox[List[&quot;b&quot;, &quot; &quot;, &quot;u&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;, &quot; &quot;, &quot;j&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;k&quot;]], &quot;-&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;m&quot;]], &quot;+&quot;, RowBox[List[&quot;b&quot;, &quot; &quot;, &quot;u&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;c&quot;]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;, &quot; &quot;, &quot;j&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;k&quot;]], &quot;-&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;m&quot;]], &quot;+&quot;, RowBox[List[&quot;b&quot;, &quot; &quot;, &quot;u&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> u </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;, &quot; &quot;, &quot;j&quot;]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;k&quot;]], &quot;+&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;m&quot;]], &quot;-&quot;, RowBox[List[&quot;b&quot;, &quot; &quot;, &quot;u&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;c&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;, &quot; &quot;, &quot;j&quot;]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;k&quot;]], &quot;+&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;m&quot;]], &quot;-&quot;, RowBox[List[&quot;b&quot;, &quot; &quot;, &quot;u&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> u </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;c&quot;, &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;, &quot; &quot;, &quot;j&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;k&quot;]], &quot;-&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;m&quot;]], &quot;-&quot;, RowBox[List[&quot;b&quot;, &quot; &quot;, &quot;u&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List[&quot;3&quot;, &quot; &quot;, &quot;c&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;, &quot; &quot;, &quot;j&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;k&quot;]], &quot;-&quot;, RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;a&quot;, &quot; &quot;, &quot;m&quot;]], &quot;-&quot;, RowBox[List[&quot;b&quot;, &quot; &quot;, &quot;u&quot;]]]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;c&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8712; </mo> <semantics> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> <annotation encoding='Mathematica'> TagBox[SuperscriptBox[&quot;\[DoubleStruckCapitalN]&quot;, &quot;+&quot;], Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> u </mi> <mo> &#8712; </mo> <semantics> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> <annotation encoding='Mathematica'> TagBox[SuperscriptBox[&quot;\[DoubleStruckCapitalN]&quot;, &quot;+&quot;], Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <ci> u </ci> </apply> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> u </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <arctan /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`u </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> u </ci> <apply> <times /> <ci> u </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> u </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> u </ci> <apply> <times /> <ci> u </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`u </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> a </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> a </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Binomial </ci> <ci> u </ci> <ci> j </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> u </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Binomial </ci> <ci> u </ci> <ci> j </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> u </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <integers /> </apply> <apply> <in /> <ci> u </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["a_", " ", "z_"]], "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["b_", " ", "z_"]], "]"]], "u_"], " ", RowBox[List["Sech", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["ArcTan", "[", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]]]], "c"], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["b", " ", "u"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "j"]], "+", "u"]], ")"]]]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", "j"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "m"]], "2"], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "m"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "+", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["b", " ", "u"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "m"]], "2"], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "m"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "-", RowBox[List["2", " ", "b", " ", "j"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["b", " ", "u"]]]]]]], ")"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["u", "\[Element]", "Integers"]], "&&", RowBox[List["u", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.