Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sech






Mathematica Notation

Traditional Notation









Elementary Functions > Sech[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving algebraic functions of the direct function > Involving ((a+b sech(c z))n)beta





http://functions.wolfram.com/01.24.21.0315.01









  


  










Input Form





Integrate[Sech[c z] ((a + b Sech[c z])^n)^\[Beta], z] == -((Sqrt[2] AppellF1[1/2, 1/2, (-n) \[Beta], 3/2, (1/2) (1 - Sech[c z]), (b - b Sech[c z])/(a + b)] Coth[(c z)/2] (-1 + Sech[c z]) ((a + b Sech[c z])^n)^\[Beta])/((a + b Sech[c z])/(a + b))^(n \[Beta]))/ (c Sqrt[1 + Sech[c z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "n"], ")"]], "\[Beta]"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SqrtBox["2"], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", RowBox[List[RowBox[List["-", "n"]], " ", "\[Beta]"]], ",", FractionBox["3", "2"], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], ",", FractionBox[RowBox[List["b", "-", RowBox[List["b", " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]]], "]"]], " ", RowBox[List["Coth", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]], ")"]], RowBox[List[RowBox[List["-", "n"]], " ", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "n"], ")"]], "\[Beta]"]]], ")"]]]], "/", RowBox[List["(", RowBox[List["c", " ", SqrtBox[RowBox[List["1", "+", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ) </mo> </mrow> <mi> &#946; </mi> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ) </mo> </mrow> <mi> &#946; </mi> </msup> </mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> &#8290; </mo> <mi> &#946; </mi> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <ci> n </ci> </apply> <ci> &#946; </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <coth /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <ci> n </ci> </apply> <ci> &#946; </ci> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> AppellF1 </ci> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> &#946; </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Sech", "[", RowBox[List["c_", " ", "z_"]], "]"]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sech", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]], ")"]], "n_"], ")"]], "\[Beta]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SqrtBox["2"], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", RowBox[List[RowBox[List["-", "n"]], " ", "\[Beta]"]], ",", FractionBox["3", "2"], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], ",", FractionBox[RowBox[List["b", "-", RowBox[List["b", " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]]], "]"]], " ", RowBox[List["Coth", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]], ")"]], RowBox[List[RowBox[List["-", "n"]], " ", "\[Beta]"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "n"], ")"]], "\[Beta]"]]], RowBox[List["c", " ", SqrtBox[RowBox[List["1", "+", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.