Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sech






Mathematica Notation

Traditional Notation









Elementary Functions > Sech[z] > Integration > Indefinite integration > Involving functions of the direct function and hyperbolic functions > Involving powers of the direct function and hyperbolic functions > Involving cosh and tanh





http://functions.wolfram.com/01.24.21.0444.01









  


  










Input Form





Integrate[((-Cosh[2 z] + 2 Tanh[z]^2) Sech[z]^2)/Sqrt[Tanh[z]^3 Tanh[2 z]^3], z] == (Cosh[z]^4 (Cosh[2 z] - 2 Tanh[z]^2) (-24 AppellF1[1/2, 1, -(1/2), 3/2, Coth[z]^2, -Coth[z]^2] Cosh[2 z] Csch[z] Sech[z]^3 + Sqrt[1 + Coth[z]^2] (3 Coth[z] + 28 Cosh[z] Sinh[z] - Tanh[z] (6 + Tanh[z]^2 - 8 Tanh[z]^4 + 4 Tanh[z]^6 - 15 Log[Tanh[z]] Sech[z]^2 Sqrt[1 + Tanh[z]^2] + 15 Log[1 + Sqrt[1 + Tanh[z]^2]] Sech[z]^2 Sqrt[1 + Tanh[z]^2] + Sinh[z]^2 (26 + 32 Tanh[z]^2 - 30 Tanh[z]^4)))) Tanh[2 z]^2)/ (12 Sqrt[2] (5 - 2 Cosh[2 z] + Cosh[4 z]) Sqrt[1 + Coth[z]^2] Sqrt[Sech[2 z]^3 Sinh[z]^6])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]]]], ")"]], SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"], " "]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "3"], " ", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["2", " ", "z"]], "]"]], "3"]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "24"]], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["1", "2"], ",", "1", ",", RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["3", "2"], ",", SuperscriptBox[RowBox[List["Coth", "[", "z", "]"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["Coth", "[", "z", "]"]], "2"]]]]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]], " ", RowBox[List["Csch", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "3"]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Coth", "[", "z", "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["Coth", "[", "z", "]"]]]], "+", RowBox[List["28", " ", RowBox[List["Cosh", "[", "z", "]"]], " ", RowBox[List["Sinh", "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["Tanh", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List["6", "+", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"], "-", RowBox[List["8", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "4"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "6"]]], "-", RowBox[List["15", " ", RowBox[List["Log", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List["15", " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List["26", "+", RowBox[List["32", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]], "-", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "4"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["2", " ", "z"]], "]"]], "2"]]], ")"]], "/", RowBox[List["(", RowBox[List["12", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["Cosh", "[", RowBox[List["4", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Coth", "[", "z", "]"]], "2"]]]], " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", RowBox[List["2", " ", "z"]], "]"]], "3"], " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "6"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <msqrt> <mrow> <mrow> <msup> <mi> tanh </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mrow> <msup> <mi> coth </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 28 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 30 </mn> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 26 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <msup> <mi> coth </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mrow> <msup> <mi> coth </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> coth </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> sech </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <tanh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <coth /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <coth /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 28 </cn> <apply> <cosh /> <ci> z </ci> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <tanh /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <power /> <apply> <sinh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -30 </cn> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 26 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <ln /> <apply> <tanh /> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> AppellF1 </ci> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <power /> <apply> <coth /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <coth /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <csch /> <ci> z </ci> </apply> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <tanh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <coth /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <sech /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <sinh /> <ci> z </ci> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z_"]], "]"]]]], "+", RowBox[List["2", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z_", "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z_", "]"]], "2"]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["Tanh", "[", "z_", "]"]], "3"], " ", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["2", " ", "z_"]], "]"]], "3"]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "24"]], " ", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["1", "2"], ",", "1", ",", RowBox[List["-", FractionBox["1", "2"]]], ",", FractionBox["3", "2"], ",", SuperscriptBox[RowBox[List["Coth", "[", "z", "]"]], "2"], ",", RowBox[List["-", SuperscriptBox[RowBox[List["Coth", "[", "z", "]"]], "2"]]]]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]], " ", RowBox[List["Csch", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "3"]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Coth", "[", "z", "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["Coth", "[", "z", "]"]]]], "+", RowBox[List["28", " ", RowBox[List["Cosh", "[", "z", "]"]], " ", RowBox[List["Sinh", "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["Tanh", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List["6", "+", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"], "-", RowBox[List["8", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "4"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "6"]]], "-", RowBox[List["15", " ", RowBox[List["Log", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List["15", " ", RowBox[List["Log", "[", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List["26", "+", RowBox[List["32", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]], "-", RowBox[List["30", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "4"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["2", " ", "z"]], "]"]], "2"]]], RowBox[List["12", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["2", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["Cosh", "[", RowBox[List["4", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Coth", "[", "z", "]"]], "2"]]]], " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", RowBox[List["2", " ", "z"]], "]"]], "3"], " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "6"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.