Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sech






Mathematica Notation

Traditional Notation









Elementary Functions > Sech[z] > Integration > Indefinite integration > Involving functions of the direct function and hyperbolic functions > Involving algebraic functions of the direct function and hyperbolic functions > Involving algebraic functions of tanh





http://functions.wolfram.com/01.24.21.0472.01









  


  










Input Form





Integrate[(-3 Tanh[z] + (Sech[z]^6 Tanh[z])^(1/3))/(Cosh[z]^5 Sinh[z])^(2/3), z] == (3 Sinh[z] (-72 (15 + 12 Sech[z]^2 + 8 Sech[z]^4) Tanh[z]^2 + 252 (7 + 3 Cosh[2 z]) Sinh[z]^2 (Sech[z]^6 Tanh[z])^(2/3) + 5 Cosh[z]^2 (55 + 48 Cosh[2 z] + 9 Cosh[4 z]) (Sech[z]^6 Tanh[z])^(4/3)))/ (1120 (Cosh[z]^5 Sinh[z])^(2/3) (Sech[z]^6 Tanh[z])^(2/3) (-3 Sinh[z] + Cosh[z] (Sech[z]^6 Tanh[z])^(1/3)))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", RowBox[List["Tanh", "[", "z", "]"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "6"], " ", RowBox[List["Tanh", "[", "z", "]"]]]], ")"]], RowBox[List["1", "/", "3"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "5"], " ", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]], RowBox[List["2", "/", "3"]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["3", " ", RowBox[List["Sinh", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "72"]], " ", RowBox[List["(", RowBox[List["15", "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]], "+", RowBox[List["8", " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]], "+", RowBox[List["252", " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["3", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "6"], " ", RowBox[List["Tanh", "[", "z", "]"]]]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["5", " ", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List["55", "+", RowBox[List["48", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["9", " ", RowBox[List["Cosh", "[", RowBox[List["4", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "6"], " ", RowBox[List["Tanh", "[", "z", "]"]]]], ")"]], RowBox[List["4", "/", "3"]]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["1120", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "5"], " ", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "6"], " ", RowBox[List["Tanh", "[", "z", "]"]]]], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", RowBox[List["Sinh", "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["Cosh", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "6"], " ", RowBox[List["Tanh", "[", "z", "]"]]]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mroot> <mrow> <mrow> <msup> <mi> sech </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mroot> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 252 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sech </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 48 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 55 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sech </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 15 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1120 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sech </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mrow> <mrow> <msup> <mi> sech </mi> <mn> 6 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <tanh /> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <sinh /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 252 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 7 </cn> </apply> <apply> <power /> <apply> <sinh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <tanh /> <ci> z </ci> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 48 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 55 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <tanh /> <ci> z </ci> </apply> </apply> <cn type='rational'> 4 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 72 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 15 </cn> </apply> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1120 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <tanh /> <ci> z </ci> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <cosh /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <tanh /> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <sinh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", RowBox[List["Tanh", "[", "z_", "]"]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z_", "]"]], "6"], " ", RowBox[List["Tanh", "[", "z_", "]"]]]], ")"]], RowBox[List["1", "/", "3"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z_", "]"]], "5"], " ", RowBox[List["Sinh", "[", "z_", "]"]]]], ")"]], RowBox[List["2", "/", "3"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["3", " ", RowBox[List["Sinh", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "72"]], " ", RowBox[List["(", RowBox[List["15", "+", RowBox[List["12", " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]], "+", RowBox[List["8", " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]], "+", RowBox[List["252", " ", RowBox[List["(", RowBox[List["7", "+", RowBox[List["3", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "6"], " ", RowBox[List["Tanh", "[", "z", "]"]]]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["5", " ", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List["55", "+", RowBox[List["48", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["9", " ", RowBox[List["Cosh", "[", RowBox[List["4", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "6"], " ", RowBox[List["Tanh", "[", "z", "]"]]]], ")"]], RowBox[List["4", "/", "3"]]]]]]], ")"]]]], RowBox[List["1120", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "5"], " ", RowBox[List["Sinh", "[", "z", "]"]]]], ")"]], RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "6"], " ", RowBox[List["Tanh", "[", "z", "]"]]]], ")"]], RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", RowBox[List["Sinh", "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["Cosh", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "6"], " ", RowBox[List["Tanh", "[", "z", "]"]]]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.