Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sin






Mathematica Notation

Traditional Notation









Elementary Functions >Sin[z]





Integration

Indefinite integration

Involving only one direct function

>
>
>

Involving one direct function and elementary functions

Involving power function

Involving power

Power arguments

>
>
>
>
>
>

Involving zalpha-1and arguments a z

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1and arguments a z+b

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1and arguments a zr

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1and arguments a zr+b

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving rational functions

Involving (a z+b)-n

>
>
>
>
>
>
>
>
>
>
>
>

Involving (a z2+b)-n

>
>
>
>
>

Involving (a z2+b z+c)-n

>
>
>
>

Involving algebraic functions

Involving (a z+b)beta

>
>
>
>
>
>

Involving exponential function

Involving exp

Involving ab z sin(c z)

>
>
>
>
>

Involving ab z+e sin(c z)

>
>
>
>

Involving ab z sin(c z+d)

>
>
>
>

Involving ab z+e sin(c z+d)

>
>
>
>

Involving ab zr sin(c z)

>
>
>
>
>

Involving ab zr+e sin(c z)

>
>
>
>

Involving ab zr+d z sin(c z)

>
>
>
>

Involving ab zr+d z+e sin(c z)

>
>
>
>

Involving ab zr sin(f z+g)

>
>
>
>

Involving ab zr+e sin(f z+g)

>
>
>
>

Involving ab zr+d z sin(f z+g)

>
>
>
>

Involving ab zr+d z+e sin(f z+g)

>
>
>
>

Involving ab z sin(c zr)

>
>
>
>

Involving ab z+e sin(c zr)

>
>
>
>

Involving ab zr sin(c zr)

>
>
>
>
>
>

Involving ab zr+e sin(c zr)

>
>
>
>
>
>

Involving ab zr+d zsin(c zr)

>
>
>
>

Involving ab zr+d z+e sin(c zr)

>
>
>
>

Involving ad z sin(c zr+g)

>
>
>
>

Involving ad z+e sin(c zr+g)

>
>
>
>

Involving ab zrsin(c zr+g)

>
>
>
>
>
>

Involving ab zr+esin(c zr+g)

>
>
>
>
>
>

Involving ab zr+d z sin(c zr+g)

>
>
>
>

Involving ab zr+d z+e sin(c zr+g)

>
>
>
>

Involving rational functions of exp

Involving (a+b ed z)-n sin(c z+e)

>
>

Involving ep z(a+b ed z)-n sin(c z+e)

>
>

Involving algebraic functions of exp

Involving (a+b ed z)beta sin(c +ez)

>
>

Involving ep z(a+b ed z)beta sin(c z+e)

>
>

Involving exponential function and a power function

Involving exp and power

Involving zalpha-1 eb z sin(c z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1 eb z+e sin(c z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1 eb z sin(c z+d)

>
>
>
>

Involving zalpha-1 eb z+e sin(c z+d)

>
>
>
>

Involving zn eb zr sin(c z)

>
>

Involving zn eb zr+e sin(c z)

>
>

Involving zn eb zr+d z sin(c z)

>
>

Involving zn eb zr+d z+e sin(c z)

>
>

Involving zn eb zr sin(f z+g)

>
>

Involving zn eb zr+e sin(f z+g)

>
>

Involving zn eb zr+d z sin(f z+g)

>
>

Involving zn eb zr+d z+e sin(f z+g)

>
>

Involving zn eb z sin(c zr)

>
>

Involving zn eb z+e sin(c zr)

>
>

Involving zalpha-1eb zr sin(c zr)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1eb zr+e sin(c zr)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zneb zr+d zsin(c zr)

>
>

Involving zn eb zr+d z+e sin(c zr)

>
>

Involving zn ed z sin(c zr+g)

>
>

Involving zn ed z+e sin(c zr+g)

>
>

Involving zalpha-1eb zrsin(c zr+g)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1eb zr+esin(c zr+g)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zn eb zr+d z sin(c zr+g)

>
>

Involving zn eb zr+d z+e sin(c zr+g)

>
>

Involving exponential and algebraic functions

Involving exp and algebraic functions

Involving (a z+b)beta dz

>
>
>
>
>

Arguments involving polynomials

Involving a z2+b z+c

>

Involving a z2+b z

>

Involving a z2+c

>

Arguments involving rational functions

Involving a z2+b/z2

>

Involving a z2+b/z2+c

>

Arguments involving algebraic functions

Involving a z+b z1/2+c

>

Involving a z+b z1/2

>

Involving a zr+c

>
>
>

Arguments involving exponential functions

>
>

Arguments involving trigonometric functions

Involving tan

>
>

Involving cot

>
>

Arguments involving hyperbolic functions

Involving tanh

>
>

Involving coth

>
>

Arguments involving inverse trigonometric functions

Involving sin-1

>
>

Involving cos-1

>
>

Involving tan-1

>
>

Involving cot-1

>
>

Involving csc-1

>
>

Involving sec-1

>
>

Arguments involving inverse hyperbolic functions

Involving sinh-1

>
>

Involving cosh-1

>
>

Involving tanh-1

>
>

Involving coth-1

>
>

Involving csch-1

>
>

Involving sech-1

>
>

Arguments involving polynomials or algebraic functions and power factors

Involving power

Involving zn sin(c zr+f z)

>
>

Involving zn sin(a zr+b z+c)

>
>

Arguments involving polynomials or algebraic functions and factors involving exponential functions

Involving exp

Involving ad z sin(c zr+f z)

>
>
>
>

Involving ad z+e sin(c zr+f z)

>
>
>
>

Involving ab zr sin(c zr+f z)

>
>
>
>

Involving ab zr+e sin(c zr+f z)

>
>
>
>

Involving ab zr+d z sin(c zr+f z)

>
>
>
>

Involving ab zr+d z+e sin(c zr+f z)

>
>
>
>

Involving ad z sin(c zr+f z+g)

>
>
>
>

Involving ad z+e sin(c zr+f z+g)

>
>
>
>
>

Involving ab zr sin(c zr+f z+g)

>
>
>
>

Involving ab zr+e sin(c zr+f z+g)

>
>
>
>

Involving ab zr+d z sin(c zr+f z+g)

>
>
>
>

Involving ab zr+d z+e sin(c zr+f z+g)

>
>
>
>

Arguments involving polynomials or algebraic functions and factors involving exponential function and a power function

Involving exp and power

Involving zn ed z sin(c zr+f z)

>
>

Involving zn ed z+e sin(c zr+f z)

>
>

Involving zn eb zr sin(c zr+f z)

>
>

Involving zn eb zr+e sin(c zr+f z)

>
>

Involving zn eb zr+d z sin(c zr+f z)

>
>

Involving zn eb zr+d z+e sin(c zr+f z)

>
>

Involving zn ed z sin(c z2+f z+g)

>
>

Involving zn ed z+e sin(c zr+f z+g)

>
>

Involving zn eb zr sin(c zr+f z+g)

>
>

Involving zn eb zr+e sin(c zr+f z+g)

>
>

Involving zn eb zr+d z sin(c zr+f z+g)

>
>

Involving zn eb zr+d z+e sin(c zr+f z+g)

>
>

Involving functions of the direct function

Involving powers of the direct function

Involving powers of sin

Involving sinv(a z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving sinv(a z+b)

>

Involving sinv(a z2+b/z2)

>

Involving sinv(a z2+b/z2+c)

>

Involving sinv(a zr)

>
>
>

Involving sinv(a(zr)p)

>
>
>

Involving sinv(a zr+b)

>
>
>

Involving sinv(a zr+b z)

>
>

Involving sinv(a zr+b z+c)

>
>

Involving products of the direct function

Involving products of two direct functions

Involving sin(c z) sin(a z)

>

Involving sin(c z) sin(a z+b)

>

Involving sin(c z+d) sin(a z+b)

>

Involving sin(d z) sin(c zr)

>
>

Involving sin(d z+e) sin(c zr)

>
>

Involving sin(b zr)sin(c zr)

>
>
>

Involving sin(d z) sin(c zr+g)

>
>

Involving sin(d z+e) sin(c zr+g)

>
>

Involving sin(b zr)sin(c zr+g)

>
>
>

Involving sin(b zr+e)sin(c zr+g)

>
>
>

Involving sin(d z) sin(c zr+f z)

>
>

Involving sin(d z+e) sin(c zr+f z)

>
>

Involving sin(b zr) sin(c zr+f z)

>
>

Involving sin(b zr+e) sin(c zr+f z)

>
>

Involving sin(b zr+d z) sin(c zr+f z)

>
>

Involving sin(d z) sin(c zr+f z+g)

>
>

Involving sin(d z+e) sin(c zr+f z+g)

>
>

Involving sin(b zr) sin(c zr+f z+g)

>
>

Involving sin(b zr+e) sin(c zr+f z+g)

>
>

Involving sin(b zr+d z) sin(c zr+f z+g)

>
>

Involving sin(b zr+d z+e) sin(c zr+f z+g)

>
>

Involving products of several direct functions

Involving sin(a z+alpha) sin(b z+beta) sin(c z+gamma)

>
>
>

Involving ∏ k=1nsin(ak z)

>

Involving products of powers of the direct function

Involving product of power of the direct function and the direct function

Involving sin(c z)sinnu(a z)

>
>
>
>
>
>
>
>

Involving sin(c z+d)sinv(a z)

>
>

Involving sin(c z)sinnu(a z+b)

>
>

Involving sin(c z+d)sinnu(a z+b)

>
>

Involving sin(b zr) sinv(c z)

>
>

Involving sin(b zr+e) sinv(c z)

>
>

Involving sin(b zr+d z) sinv(c z)

>
>

Involving sin(b zr+d z+e) sinv(c z)

>
>

Involving sin(b zr) sinv(f z+g)

>
>

Involving sin(b zr+e) sinv(f z+g)

>
>

Involving sin(b zr+d z) sinv(f z+g)

>
>

Involving sin(b zr+d z+e) sinv(f z+g)

>
>

Involving sin(b z)sinv(c zr)

>
>

Involving sin(d z+e) sinv(c zr)

>
>

Involving sin(b zr)sinv(c zr)

>
>
>

Involving sin(b zr+e) sinv(c zr)

>
>
>

Involving sin(b zr+d z) sinv(c zr)

>
>

Involving sin(b zr+d z+e) sinv(c zr)

>
>

Involving sin(d z) sinv(c zr+g)

>
>

Involving sin(d z+e) sinv(c zr+g)

>
>

Involving sin(b zr) sinv(c zr+g)

>
>
>

Involving sin(b zr+e) sinv(c zr+g)

>
>
>

Involving sin(b zr+d z) sinv(c zr+g)

>
>

Involving sin(b zr+d z+e) sinv(c zr+g)

>
>

Involving sin(d z) sinv(c zr+f z)

>
>

Involving sin(d z+e) sinv(c zr+f z)

>
>

Involving sin(b zr) sinv(c zr+f z)

>
>

Involving sin(b zr+e) sinv(c zr+f z)

>
>

Involving sin(b zr+d z) sinv(c zr+f z)

>
>

Involving sin(b zr+d z+e) sinv(c zr+f z)

>
>

Involving sin(d z) sinv(c zr+f z+g)

>
>

Involving sin(d z+e) sinv(c zr+f z+g)

>
>

Involving sin(b zr) sinv(c zr+f z+g)

>
>

Involving sin(b zr+e) sinv(c zr+f z+g)

>
>

Involving sin(b zr+d z) sinv(c zr+f z+g)

>
>

Involving sin(b zr+d z+e) sinv(c zr+f z+g)

>
>

Involving product of powers of two direct functions

Involving sinmu(c z)sinv(a z)

>
>
>
>
>
>
>
>

Involving sinmu(c z)sinnu(a z+b)

>
>
>

Involving sinmu(c z+d)sinv(a z+b)

>
>

Involving sinm(b z) sinv(c zr)

>
>

Involving sinm(d z+e) sinv(c zr)

>
>

Involving sinm(b zr)sinv(c zr)

>
>
>

Involving sinm(d z) sinv(c zr+g)

>
>

Involving sinm(d z+e) sinv(c zr+g)

>
>

Involving sinm(b zr) sinv(c zr+g)

>
>
>

Involving sinm(a zr+e) sinv(c zr+g)

>
>
>

Involving sinm(d z) sinv(c zr+f z)

>
>

Involving sinm(d z+e) sinv(c zr+f z)

>
>

Involving sinm(b zr) sinv(c zr+f z)

>
>

Involving sinm(b zr+e) sinv(c zr+f z)

>
>

Involving sinm(b zr+d z) sinv(c zr+f z)

>
>

Involving sinm(d z) sinv(c zr+f z+g)

>
>

Involving sinm(d z+e) sinv(c zr+f z+g)

>
>

Involving sinm(b zr) sinv(c zr+f z+g)

>
>

Involving sinm(b zr+e) sinv(c zr+f z+g)

>
>

Involving sinm(b zr+d z) sinv(c zr+f z+g)

>
>

Involving sinm(b zr+d z+e) sinv(c zr+f z+g)

>
>

Involving rational functions of the direct function

Involving 1/a+b sin(c z)

>
>
>

Involving (a+b sin(c z))-n

>
>
>
>
>

Involving 1/a+b sinn(c z)

>
>
>
>
>
>

Involving (a+b sin2(c z))-n

>
>
>

Involving sin(d z)/a+b sin(c z)

>
>
>
>
>
>
>

Involving sin(d z)(a+b sin(c z))-n

>
>
>
>
>
>
>
>

Involving sin(d z)/a+b sin2(c z)

>
>
>

Involving sinm(c z)/a+b sinn(c z)

>
>
>

Involving sin(d z)(a+b sin2(c z))-n

>

Involving sinm(c z)(a+b sin2(c z))-n

>
>

Involving sin(e z)sin(d z)/a+b sin(c z)

>

Involving sin(e z)sin(d z)(a+b sin(c z))-n

>

Involving sin(e z)sin(d z)/a+b sin2(c z)

>

Involving sin(e z)sin(d z)(a+b sin2(c z))-n

>

Involving algebraic functions of the direct function

Involving (a+b sin(c z))beta

>
>
>
>
>
>
>
>
>
>
>
>

Involving ((a+b sin(c z))nu)beta

>
>
>
>
>

Involving (a+b sin(c z))beta sin(d z)

>
>
>
>
>
>

Involving ((a+b sin(c z))nu)beta sin(d z)

>
>
>
>
>

Involving (a+b sin(c z))beta sinnu(c z)

>
>
>

Involving (a+b sin(c z))betaand rational function of sin(c z)

>
>
>
>
>
>

Involving (a+b sin(2c z))beta sin(c z)

>
>
>
>
>
>

Involving ((a+b sin(2c z))m)+-1/2sin(c z)

>
>
>
>

Involving (a+b sin(2c z))beta sinv(c z)

>
>
>
>
>
>
>
>
>
>
>
>

Involving sin(e z)sin(d z)(a+b sin(c z))beta

>

Involving (a+b sin2(c z))beta

>
>
>
>
>
>
>

Involving (a+b sin2(c z))betasin(d z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving ((a+b sin2(c z))nu)beta

>
>
>
>
>

Involving ((a+b sin2(c z))nu)betasin(d z)

>
>
>
>
>
>
>
>

Involving (a+b sin2(c z))beta sinnu(c z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving (a+b sin2(c z))betaand rational function of sin(c z)

>
>
>
>
>
>
>
>
>
>

Involving sin(e z)sin(d z)(a+b sin2(c z))beta

>

Involving (a+b sin2(c z))betaand algebraic function of sin(c z)

>
>

Other integrals

>
>
>
>
>
>
>
>

Involving functions of the direct function and a power function

Involving powers of the direct function and a power function

Involving powers of sin and power

Involving zalpha-1 sinv(a z)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1 sinnu(a z+b)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Involving zalpha-1 sinv(a zr)

>
>
>
>
>
>

Involving zalpha-1 sinv(a zr+b)

>
>
>
>
>
>

Involving zn sinv(c zr+f z)

>
>

Involving zn sinv(c zr+f z+g)

>
>

Involving powers of the direct function and algebraic functions

Involving powers of sin and algebraic functions

Involving (a z+b)beta

>
>
>
>

Involving products of the direct function and a power function

Involving products of two direct functions and a power function

Involving zalpha-1sin(c z)sin(a z)

>
>
>
>

Involving zalpha-1sin(c z)sin(a z+b)

>

Involving zalpha-1sin(c z+d)sin(a z+b)

>

Involving zn sin(d z) sin(c zr)

>
>

Involving zn sin(d z+e) sin(c zr)

>
>

Involving zalpha-1sin(b zr)sin(c zr)

>
>
>

Involving zn sin(d z) sin(c zr+g)

>
>

Involving zn sin(d z+e) sin(c zr+g)

>
>

Involving zalpha-1 sin(b zr) sin(c zr+g)

>
>
>

Involving zalpha-1 sin(b zr+e) sin(c zr+g)

>
>
>

Involving zn sin(d z) sin(c zr+f z)

>
>

Involving zn sin(d z+e) sin(c zr+f z)

>
>

Involving zn sin(b zr) sin(c zr+f z)

>
>

Involving zn sin(b zr+e) sin(c zr+f z)

>
>

Involving zn sin(b zr+d z) sin(c zr+f z)

>
>

Involving zn sin(d z) sin(c zr+f z+g)

>
>

Involving zn sin(d z+e) sin(c zr+f z+g)

>
>

Involving zn sin(b zr) sin(c zr+f z+g)

>
>

Involving zn sin(b zr+e) sin(c zr+f z+g)

>
>

Involving zn sin(b zr+d z) sin(c zr+f z+g)

>
>

Involving zn sin(b zr+d z+e) sin(c zr+f z+g)

>
>

Involving products of several direct functions and a power function

Involving zalpha-1 sin(a z) sin(b z) sin(c z)

>
>

Involving zalpha-1k=1nsin(ak z)

>
>

Involving products of powers of the direct function and a power function

Involving product of power of the direct function, the direct function and a power function

Involving zalpha-1sin(c z)sinnu(a z)

>
>

Involving zalpha-1sin(c z+d)sinv(a z)

>
>

Involving zalpha-1sin(c z)sinv(a z+b)

>
>

Involving zalpha-1sin(c z+d)sinv(a z+b)

>
>

Involving znsin(b zr)sinv(c z)

>
>

Involving zn sin(b zr+e) sinv(c z)

>
>

Involving znsin(b zr+d z)sinv(cvz)

>
>

Involving znsin(b zr+d z+e)sinv(cvz)

>
>

Involving zn sin(b zr) sinv(f z+g)

>
>

Involving zn sin(b zr+e) sinv(f z+g)

>
>

Involving zn sin(b zr+d z) sinv(f z+g)

>
>

Involving zn sin(b zr+d z+e) sinv(f z+g)

>
>

Involving znsin(b z)sinv(c zr)

>
>

Involving zn sin(d z+e) sinv(c zr)

>
>

Involving zalpha-1sin(b zr)sinv(c zr)

>
>
>

Involving zalpha-1 sin(b zr+e) sinv(c zr)

>
>
>

Involving zn sin(b zr+d z) sinv(c zr)

>
>

Involving zn sin(b zr+d z+e) sinv(c zr)

>
>

Involving zn sin(d z) sinv(c zr+g)

>
>

Involving zn sin(d z+e) sinv(c zr+g)

>
>

Involving zalpha-1 sin(b zr) sinv(c zr+g)

>
>
>

Involving zalpha-1 sin(b zr+e) sinv(c zr+g)

>
>
>

Involving zn sin(b zr+d z) sinv(c zr+g)

>
>

Involving zn sin(b zr+d z+e) sinv(c zr+g)

>
>

Involving zn sin(d z) sinv(c zr+f z)

>
>

Involving zn sin(d z+e) sinv(c zr+f z)

>
>

Involving zn sin(b zr) sinv(c zr+f z)

>
>

Involving zn sin(b zr+e) sinv(c zr+f z)

>
>

Involving zn sin(b zr+d z) sinv(c zr+f z)

>
>

Involving zn sin(b zr+d z+e) sinv(c zr+f z)

>
>

Involving zn sin(d z) sinv(c zr+f z+g)

>
>

Involving zn sin(d z+e) sinv(c zr+f z+g)

>
>

Involving zn sin(b zr) sinv(c zr+f z+g)

>
>

Involving zn sin(b zr+e) sinv(c zr+f z+g)

>
>

Involving zn sin(b zr+d z) sinv(c zr+f z+g)

>
>

Involving zn sin(b zr+d z+e) sinv(c zr+f z+g)

>
>

Involving product of powers of two direct functions and a power function

Involving zalpha-1sinmu(c z)sinv(a z)

>
>

Involving zalpha-1sinmu(c z)sinv(a z+b)

>
>
>

Involving zalpha-1sinmu(c z+d)sinv(a z+b)

>
>

Involving znsinm(b z)sinv(c zr)

>
>

Involving zn sinm(d z+e) sinv(c zr)

>
>

Involving zalpha-1sinm(b zr)sinv(c zr)

>
>
>

Involving zn sinm(d z) sinv(c zr+g)

>
>

Involving zn sinm(d z+e) sinv(c zr+g)

>
>

Involving zalpha-1 sinm(b zr) sinv(c zr+g)

>
>
>

Involving zalpha-1 sinm(b zr+e) sinv(c zr+g)

>
>
>

Involving zn sinm(d z) sinv(c zr+f z)

>
>

Involving zn sinm(d z+e) sinv(c zr+f z)

>
>

Involving zn sinm(b zr) sinv(c zr+f z)

>
>

Involving zn sinm(b zr+e) sinv(c zr+f z)

>
>

Involving zn sinm(b zr+d z) sinv(c zr+f z)

>
>

Involving zn sinm(d z) sinv(c zr+f z+g)

>
>

Involving zn sinm(d z+e) sinv(c zr+f z+g)

>
>

Involving zn sinm(b zr) sinv(c zr+f z+g)

>
>

Involving zn sinm(b zr+e) sinv(c zr+f z+g)

>
>

Involving zn sinm(b zr+d z) sinv(c zr+f z+g)

>
>

Involving zn sinm(b zr+d z+e) sinv(c zr+f z+g)

>
>

Involving products of powers of several direct functions and a power function

Involving zalpha-1 sin2(a z) sin(b z) sin(c z)

>
>

Involving rational functions of the direct function and a power function

Involving z/a+b sin(c z+d)

>
>
>
>

Involving z sin(c z)/a+b sin(2c z)

>

Involving algebraic functions of the direct function and a power function

Involving z sin(c z)/(a+b sin2(c z))beta

>

Involving functions of the direct function and algebraic functions

Involving products of the direct function and algebraic functions

Involving products of two direct functions and algebraic functions

Involving (f+e z)alpha-1sin(d+c z) sin(b+a z)

>
>
>

Involving functions of the direct function and exponential function

Involving powers of the direct function and exponential function

Involving powers of sin and exp

Involving eb z sinv(a z)

>
>
>
>
>
>
>
>
>
>

Involving eb z+e sinv(a z)

>
>

Involving ep z sinnu(a z+b)

>
>

Involving ep z+e sinnu(a z+b)

>
>

Involving eb zrsinv(c z)

>
>

Involving eb zr+esinv(c z)

>
>

Involving eb zr+d zsinv(c z)

>
>

Involving eb zr+d z+esinv(c z)

>
>

Involving eb zr sinv(f z+g)

>
>

Involving eb zr+e sinv(f z+g)

>
>

Involving eb zr+d z sinv(f z+g)

>
>

Involving eb zr+d z+e sinv(f z+g)

>
>

Involving eb z sinv(c zr)

>
>

Involving eb z+e sinv(c zr)

>
>

Involving eb zrsinv(c zr)

>
>
>

Involving eb zr+esinv(c zr)

>
>
>

Involving eb zr+d zsinv(c zr)

>
>

Involving eb zr+d z+e sinv(c zr)

>
>

Involving ed z sinv(c zr+g)

>
>

Involving ed z+e sinv(c zr+g)

>
>

Involving eb zrsinv(c zr+g)

>
>
>

Involving eb zr+esinv(c zr+g)

>
>
>

Involving eb zr+d z sinv(c zr+g)

>
>

Involving eb zr+d z+e sinv(c zr+g)

>
>

Involving ed z sinv(c zr+f z)

>
>

Involving ed z+e sinv(c zr+f z)

>
>

Involving eb zr sinv(c zr+f z)

>
>

Involving eb zr+e sinv(c zr+f z)

>
>

Involving eb zr+d z sinv(c zr+f z)

>
>

Involving eb zr+d z+e sinv(c zr+f z)

>
>

Involving ed z sinv(c zr+f z+g)

>
>

Involving ed z+e sinv(c zr+f z+g)

>
>

Involving eb zr sinv(c zr+f z+g)

>
>

Involving eb zr+e sinv(c zr+f z+g)

>
>

Involving eb zr+d z sinv(c zr+f z+g)

>
>

Involving eb zr+d z+e sinv(c zr+f z+g)

>
>

Involving powers of sin and rational functions of exp

Involving (a+b ed z)beta sinv(c z)

>

Involving ep zsinv(c z)(a+b ed z)-n

>

Involving powers of sin and algebraic functions of exp

Involving (a+b ed z)beta sinv(c z)

>

Involving ep z(a+b ed z)beta sinv(c z)

>

Involving products of the direct function and exponential function

Involving products of two direct functions and exponential function

Involving eb zsin(c z) sin(a z)

>

Involving ep zsin(c z) sin(a z+b)

>

Involving ep zsin(c z+d) sin(a z+b)

>

Involving ep zrsin(b z)sin(c z)

>
>

Involving ep zsin(b zr)sin(c z)

>
>

Involving ep zrsin(b zr)sin(c z)

>
>

Involving ep z sin(b zr)sin(c zr)

>
>

Involving ep zr sin(b zr)sin(c zr)

>
>
>

Involving eb zr+e sin(a zr+q) sin(c zr+g)

>
>
>

Involving eb zr+d z+e sin(a zr+p z+q) sin(c zr+f z+g)

>
>

Involving products of two direct functions and rational functions of exp

Involving sin(e z)sin(c z)(a+b ed z)-n

>

Involving ep zsin(e z)sin(c z)(a+b ed z)-n

>

Involving products of two direct functions and algebraic functions of exp

Involving (a+b ed z)beta sin(e z)sin(c z)

>

Involving ep z(a+b ed z)beta sin(e z)sin(c z)

>

Involving products of several direct functions and exponential function

Involving ep z sin(a z) sin(b z) sin(c z)

>

Involving ep zk=1nsin(ak z)

>

Involving products of powers of two direct functions and exponential function

Involving product of power of the direct function, the direct function and exponential function

Involving eb zsin(c z) sinnu(a z)

>
>

Involving eb zsin(c z+d) sinnu(a z)

>
>

Involving ep zsin(c z) sinv(a z+b)

>
>

Involving ep zsin(c z+d) sinv(a z+b)

>
>

Involving ep zrsin(b z)sinv(c z)

>
>

Involving ep zsin(b zr)sinv(c z)

>
>

Involving ep z sin(b z)sinv(c zr)

>
>

Involving ep z sin(b zr)sinv(c zr)

>
>

Involving ep zr sin(b z)sinv(c zr)

>
>

Involving znep zrsin(b zr)sinv(c z)

>
>

Involving ep zr sin(b zr)sinv(c zr)

>
>
>

Involving eb zr+e sin(a zr+q) sinv(c zr+g)

>
>
>

Involving eb zr+d z+e sin(a zr+p z+q) sinv(c zr+f z+g)

>
>

Involving product of power of the direct function, the direct function and rational functions of exp

Involving sin(e z)sinv(c z)(a+b ed z)-n

>

Involving ep zsin(e z)sinv(c z)(a+b ed z)-n

>

Involving product of power of the direct function, the direct function and algebraic functions of exp

Involving (a+b ed z)beta sin(e z)sinv(c z)

>

Involving ep z(a+b ed z)beta sin(e z)sinv(c z)

>

Involving products of powers of two direct functions and exponential function

Involving eb zsinmu(c z) sinv(a z)

>
>

Involving ep zsinm(c z) sinv(a z+b)

>
>
>

Involving ep zsinmu(c z+d) sinv(a z+b)

>
>

Involving ep zrsinm(b z)sinv(c z)

>
>

Involving ep zsinm(b zr)sinv(c z)

>
>

Involving ep zrsinm(b zr)sinv(c z)

>
>

Involving ep z sinm(b zr)sinv(c zr)

>
>

Involving ep zr sinm(b zr)sinv(c zr)

>
>
>

Involving eb zr+e sinm(a zr+q) sinv(c zr+g)

>
>
>

Involving eb zr+d z+e sinm(a zr+p z+q) sinv(c zr+f z+g)

>
>

Involving product of powers of two direct functions and rational functions of exp

Involving sinm(e z)sinv(c z)(a+b ed z)-n

>

Involving ep zsinm(e z)sinv(c z)(a+b ed z)-n

>

Involving product of powers of two direct functions and algebraic functions of exp

Involving (a+b ed z)beta sinm(e z)sinv(c z)

>

Involving ep z(a+b ed z)beta sinm(e z)sinv(c z)

>

Involving rational functions of the direct function and exponential function

Involving exp

Involving ep z/a+b sin(c z)

>

Involving ep z(a+b sin(c z))-n

>

Involving ep z/a+b sin2(c z)

>

Involving ep z(a+b sin2(c z))-n

>

Involving ep z sin(d z)/a+b sin(c z)

>

Involving ep z(a+b sin(c z))-nsin(d z)

>

Involving ep zsin(d z)/a+b sin2(c z)

>
>

Involving ep z(a+b sin2(c z))-nsin(d z)

>

Involving ep zsin(e z)sin(d z)/a+b sin(c z)

>

Involving ep zsin(e z)sin(d z)(a+b sin(c z))-n

>

Involving ep zsin(e z)sin(d z)/a+b sin2(c z)

>

Involving ep zsin(e z)sin(d z)(a+b sin2(c z))-n

>

Involving algebraic functions of the direct function and exponential function

Involving exp

Involving ep z (a+b sin(d z))beta

>

Involving ep z (a+b sin2(d z))beta

>

Involving ep z(a+b sin(d z))beta sin(c z)

>

Involving ep z(a+b sin2(d z))beta sin(c z)

>

Involving ep zsin(e z)sin(c z)(a+b sin(d z))beta

>

Involving ep zsin(e z)sin(c z)(a+b sin2(d z))beta

>

Involving functions of the direct function, exponential and a power functions

Involving powers of the direct function, exponential and a power functions

Involving powers of sin, exp and power

Involving zalpha-1 eb z sinv(a z)

>
>
>
>
>
>
>

Involving zalpha-1 eb z+e sinv(a z)

>
>
>
>
>
>

Involving zalpha-1 ep z sinnu(a z+b)

>
>
>
>
>
>

Involving zalpha-1 ep z+e sinnu(a z+b)

>
>
>
>
>
>

Involving zn eb zrsinv(c z)

>
>

Involving zn eb zr+e sinv(c z)

>
>

Involving zneb zr+d zsinv(c z)

>
>

Involving zneb zr+d z+esinv(c z)

>
>

Involving zn eb zr sinv(f z+g)

>
>

Involving zn eb zr+e sinv(f z+g)

>
>

Involving zn eb zr+d z sinv(f z+g)

>
>

Involving zn eb zr+d z+e sinv(f z+g)

>
>

Involving zn eb z sinv(c zr)

>
>

Involving zn eb z+e sinv(c zr)

>
>

Involving zalpha-1eb zrsinv(c zr)

>
>
>

Involving zalpha-1 eb zr+e sinv(c zr)

>
>
>

Involving zneb zr+d zsinv(c zr)

>
>

Involving zn eb zr+d z+e sinv(c zr)

>
>

Involving zn ed z sinv(c zr+g)

>
>

Involving zn ed z+e sinv(c zr+g)

>
>

Involving zalpha-1 eb zr sinv(c zr+g)

>
>
>

Involving zalpha-1 eb zr+e sinv(c zr+g)

>
>
>

Involving zn eb zr+d z sinv(c zr+g)

>
>

Involving zn eb zr+d z+e sinv(c zr+g)

>
>

Involving zn ed z sinv(c zr+f z)

>
>

Involving zn ed z+e sinv(c zr+f z)

>
>

Involving zn eb zr sinv(c zr+f z)

>
>

Involving zn eb zr+e sinv(c zr+f z)

>
>

Involving zn eb zr+d z+e sinv(c zr+f z)

>
>

Involving zn eb zr+d z+e sinv(c zr+f z)

>
>

Involving zn ed z sinv(c zr+f z+g)

>
>

Involving zn ed z+e sinv(c zr+f z+g)

>
>

Involving zn eb zr sinv(c zr+f z+g)

>
>

Involving zn eb zr+e sinv(c zr+f z+g)

>
>

Involving zn eb zr+d z sinv(c zr+f z+g)

>
>

Involving zn eb zr+d z+e sinv(c zr+f z+g)

>
>

Involving products of the direct functions, exponential and a power functions

Involving products of two direct functions, exponential and a power functions

Involving zalpha-1ep zsin(c z) sin(a z)

>

Involving zalpha-1ep zsin(c z) sin(a z+b)

>

Involving zalpha-1ep zsin(c z+d) sin(a z+b)

>

Involving znep zrsin(b z)sin(c z)

>
>

Involving znep zsin(b zr)sin(c z)

>
>

Involving znep zrsin(b zr)sin(c z)

>
>

Involving znep z sin(b zr)sin(c zr)

>
>

Involving zalpha-1ep zr sin(b zr)sin(c zr)

>

Involving zalpha-1 eb zr+e sin(a zr+q) sin(c zr+g)

>

Involving zn eb zr+d z+e sin(a zr+p z+q) sin(c zr+f z+g)

>
>

Involving products of several direct functions, exponential and a power functions

Involving zalpha-1ep z sin(a z) sin(b z) sin(c z)

>

Involving zalpha-1ep zk=1nsin(ak z)

>
>

Involving products of powers of the direct function, exponential and a power functions

Involving product of power of the direct function, the direct function, exponential and a power functions

Involving zalpha-1eb zsin(c z) sinnu(a z)

>
>

Involving zneb zsin(c z+d) sinnu(a z)

>
>

Involving zalpha-1ep zsin(c z) sinv(a z+b)

>
>

Involving zalpha-1ep zsin(c z+d) sinv(a z+b)

>
>

Involving znep zrsin(b z)sinv(c z)

>
>

Involving znep zsin(b zr)sinv(c z)

>
>

Involving znep z sin(b z)sinv(c zr)

>
>

Involving znep z sin(b zr)sinv(c zr)

>
>

Involving znep zr sin(b z)sinv(c zr)

>
>

Involving znep zrsin(b zr)sinv(c z)

>
>

Involving zalpha-1ep zr sin(b zr)sinv(c zr)

>

Involving zalpha-1 eb zr+e sin(a zr+q) sinv(c zr+g)

>

Involving zn eb zr+d z+e sin(a zr+p z+q) sinv(c zr+f z+g)

>
>

Involving product of powers of two direct functions, exponential and a power functions

Involving zalpha-1eb zsinmu(c z) sinv(a z)

>
>

Involving zalpha-1ep zsinm(c z) sinv(a z+b)

>
>
>

Involving zalpha-1ep zsinm(c z+d) sinv(a z+b)

>
>

Involving znep zrsinm(b z) sinv(c z)

>
>

Involving znep zsinm(b zr)sinv(c z)

>
>

Involving znep zrsinm(b zr)sinv(c z)

>
>

Involving znep z sinm(b zr)sinv(c zr)

>
>

Involving zalpha-1ep zr sinm(b zr)sinv(c zr)

>

Involving zalpha-1 eb zr+e sinm(a zr+q) sinv(c zr+g)

>

Involving zn eb zr+d z+e sinm(a zr+p z+q) sinv(c zr+f z+g)

>
>

Involving products of powers of several direct functions, exponential and a power functions

Involving zalpha-1 dz sin2(a z) sin(b z) sin(c z)

>

Involving functions of the direct function, exponential and algebraic functions

Involving powers of the direct function, exponential and algebraic functions

Involving powers of sin, exp and algebraic functions

Involving (a z+b)beta dz sinv(c z+e)

>
>
>
>
>
>

Involving products of the direct function, exponential and algebraic functions

Involving products of sin, exp and algebraic functions

Involving (a z+b)beta dz sin(c z) sin(e z)

>

Definite integration