Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sin






Mathematica Notation

Traditional Notation









Elementary Functions > Sin[z] > Summation > Infinite summation





http://functions.wolfram.com/01.06.23.0022.01









  


  










Input Form





Sum[k^(2 m) Sin[k x], {k, 1, Infinity}] == -((KroneckerDelta[m] I)/2) + (1/2) (Cot[z/2] + I) Sum[((-1)^k k! StirlingS2[2 m, k] (I Cot[z/2] + 1)^k)/ 2^k, {k, 0, 2 m}] /; Element[x, Reals] && Element[m, Integers] && m >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[SuperscriptBox["k", RowBox[List["2", "m"]]], " ", RowBox[List["Sin", "[", RowBox[List["k", " ", "x"]], "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["KroneckerDelta", "[", "m", "]"]], "\[ImaginaryI]"]], "2"]]], "+", RowBox[List[FractionBox["1", "2"], RowBox[List["(", " ", RowBox[List[RowBox[List["Cot", "[", FractionBox["z", "2"], "]"]], "+", "\[ImaginaryI]"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["2", "m"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["k", "!"]], " ", RowBox[List["StirlingS2", "[", RowBox[List[RowBox[List["2", "m"]], ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", FractionBox["z", "2"], "]"]]]], "+", "1"]], ")"]], "k"]]], SuperscriptBox["2", "k"]]]]]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msup> <mi> k </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mi> m </mi> </msub> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mn> 2 </mn> <mi> k </mi> </msup> </mfrac> <mo> &#8290; </mo> <msubsup> <semantics> <mi> &#119982; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[ScriptCapitalS]&quot;, StirlingS2] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mrow> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> </msubsup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cot </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> x </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <ci> k </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> k </ci> <ci> x </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <ci> m </ci> </apply> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <cot /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <imaginaryi /> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> StirlingS2 </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cot /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> x </ci> <reals /> </apply> <apply> <in /> <ci> m </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "1"]], "\[Infinity]"], RowBox[List[SuperscriptBox["k_", RowBox[List["2", " ", "m_"]]], " ", RowBox[List["Sin", "[", RowBox[List["k_", " ", "x_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["KroneckerDelta", "[", "m", "]"]], " ", "\[ImaginaryI]"]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Cot", "[", FractionBox["z", "2"], "]"]], "+", "\[ImaginaryI]"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["2", " ", "m"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["k", "!"]], " ", RowBox[List["StirlingS2", "[", RowBox[List[RowBox[List["2", " ", "m"]], ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", FractionBox["z", "2"], "]"]]]], "+", "1"]], ")"]], "k"]]], SuperscriptBox["2", "k"]]]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.