Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sinh






Mathematica Notation

Traditional Notation









Elementary Functions > Sinh[z] > Specific values > Values at fixed points





http://functions.wolfram.com/01.19.03.0093.01









  


  










Input Form





Sinh[(8 Pi I)/7] == (1/24) (4 I Sqrt[7] - (2 Sqrt[7] (I + Sqrt[3]))/ (7 - (I Sqrt[7])/2 - (3 Sqrt[21])/2)^(1/3) - (2 + 2 I Sqrt[3]) (7 - (I Sqrt[7])/2 - (3 Sqrt[21])/2)^(1/3) + (2 Sqrt[7] (-I + Sqrt[3]))/(7 + (I Sqrt[7])/2 + (3 Sqrt[21])/2)^(1/3) + 2 (1 - I Sqrt[3]) (7 + (I Sqrt[7])/2 + (3 Sqrt[21])/2)^(1/3))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Sinh", "[", FractionBox[RowBox[List["8", " ", "\[Pi]", " ", "\[ImaginaryI]"]], "7"], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "24"], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "\[ImaginaryI]", " ", SqrtBox["7"]]], "-", FractionBox[RowBox[List["2", " ", SqrtBox["7"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["7", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "2"], "-", FractionBox[RowBox[List["3", " ", SqrtBox["21"]]], "2"]]], ")"]], RowBox[List["1", "/", "3"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["2", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["7", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "2"], "-", FractionBox[RowBox[List["3", " ", SqrtBox["21"]]], "2"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", FractionBox[RowBox[List["2", " ", SqrtBox["7"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["7", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "2"], "+", FractionBox[RowBox[List["3", " ", SqrtBox["21"]]], "2"]]], ")"]], RowBox[List["1", "/", "3"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["7", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "2"], "+", FractionBox[RowBox[List["3", " ", SqrtBox["21"]]], "2"]]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 7 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 24 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mrow> <mn> 7 </mn> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mn> 21 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mrow> <mn> 7 </mn> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mn> 21 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mroot> <mrow> <mn> 7 </mn> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mn> 21 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mn> 3 </mn> </mroot> </mfrac> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mroot> <mrow> <mn> 7 </mn> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 7 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mn> 21 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mn> 3 </mn> </mroot> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sinh /> <apply> <times /> <cn type='integer'> 8 </cn> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 24 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 21 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 21 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 21 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 21 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Sinh", "[", FractionBox[RowBox[List["8", " ", "\[Pi]", " ", "\[ImaginaryI]"]], "7"], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "24"], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "\[ImaginaryI]", " ", SqrtBox["7"]]], "-", FractionBox[RowBox[List["2", " ", SqrtBox["7"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", SqrtBox["3"]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["7", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "2"], "-", FractionBox[RowBox[List["3", " ", SqrtBox["21"]]], "2"]]], ")"]], RowBox[List["1", "/", "3"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["2", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["7", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "2"], "-", FractionBox[RowBox[List["3", " ", SqrtBox["21"]]], "2"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", FractionBox[RowBox[List["2", " ", SqrtBox["7"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", SqrtBox["3"]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["7", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "2"], "+", FractionBox[RowBox[List["3", " ", SqrtBox["21"]]], "2"]]], ")"]], RowBox[List["1", "/", "3"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["7", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["7"]]], "2"], "+", FractionBox[RowBox[List["3", " ", SqrtBox["21"]]], "2"]]], ")"]], RowBox[List["1", "/", "3"]]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.