Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sinh






Mathematica Notation

Traditional Notation









Elementary Functions > Sinh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving exponential function > Involving exp > Involving ab zr+esinh(c zr)





http://functions.wolfram.com/01.19.21.0229.01









  


  










Input Form





Integrate[a^(b Sqrt[z] + e) Sinh[c Sqrt[z]], z] == (2 a^(e + b Sqrt[z]) (c Cosh[c Sqrt[z]] (c^2 Sqrt[z] + 2 b Log[a] - b^2 Sqrt[z] Log[a]^2) - (c^2 + b c^2 Sqrt[z] Log[a] + b^2 Log[a]^2 - b^3 Sqrt[z] Log[a]^3) Sinh[c Sqrt[z]]))/(c^2 - b^2 Log[a]^2)^2










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", "e"]]], RowBox[List["Sinh", "[", RowBox[List["c", " ", SqrtBox["z"]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["e", "+", RowBox[List["b", " ", SqrtBox["z"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", SqrtBox["z"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["c", "2"], " ", SqrtBox["z"]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["Log", "[", "a", "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", SqrtBox["z"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["c", "2"], "+", RowBox[List["b", " ", SuperscriptBox["c", "2"], " ", SqrtBox["z"], " ", RowBox[List["Log", "[", "a", "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], "-", RowBox[List[SuperscriptBox["b", "3"], " ", SqrtBox["z"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "3"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]]]], ")"]], "2"]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> a </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <ci> e </ci> </apply> </apply> <apply> <sinh /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <ci> e </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <cosh /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> a </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <sinh /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["a_", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", "e_"]]], " ", RowBox[List["Sinh", "[", RowBox[List["c_", " ", SqrtBox["z_"]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["e", "+", RowBox[List["b", " ", SqrtBox["z"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", SqrtBox["z"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["c", "2"], " ", SqrtBox["z"]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["Log", "[", "a", "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", SqrtBox["z"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["c", "2"], "+", RowBox[List["b", " ", SuperscriptBox["c", "2"], " ", SqrtBox["z"], " ", RowBox[List["Log", "[", "a", "]"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], "-", RowBox[List[SuperscriptBox["b", "3"], " ", SqrtBox["z"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "3"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", SqrtBox["z"]]], "]"]]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]]]], ")"]], "2"]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18