Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Tan






Mathematica Notation

Traditional Notation









Elementary Functions > Tan[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving rational functions of the direct function > Involving (a+b tan(c z))-n





http://functions.wolfram.com/01.08.21.0097.01









  


  










Input Form





Integrate[(A + B Tan[z])/(a + b Tan[z])^3, z] == (Sec[z]^2 (a Cos[z] + b Sin[z]) (b^2 (a^2 + b^2) ((-A) b + a B) + (1/a) (2 b (a^2 + b^2) (3 a A b - 2 a^2 B + b^2 B) Sin[z] (a Cos[z] + b Sin[z])) + 2 (a^3 A - 3 a A b^2 + 3 a^2 b B - b^3 B) z (a Cos[z] + b Sin[z])^2 - 2 (-3 a^2 A b + A b^3 + a^3 B - 3 a b^2 B) Log[a Cos[z] + b Sin[z]] (a Cos[z] + b Sin[z])^2) (A + B Tan[z]))/ (2 (a^2 + b^2)^3 (A Cos[z] + B Sin[z]) (a + b Tan[z])^3)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["A", "+", RowBox[List["B", " ", RowBox[List["Tan", "[", "z", "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tan", "[", "z", "]"]]]]]], ")"]], "3"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sec", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "A"]], " ", "b"]], "+", RowBox[List["a", " ", "B"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "a"], RowBox[List["(", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "a", " ", "A", " ", "b"]], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "B"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", "B"]]]], ")"]], " ", RowBox[List["Sin", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], ")"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["a", "3"], " ", "A"]], "-", RowBox[List["3", " ", "a", " ", "A", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["a", "2"], " ", "b", " ", "B"]], "-", RowBox[List[SuperscriptBox["b", "3"], " ", "B"]]]], ")"]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], ")"]], "2"]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", SuperscriptBox["a", "2"], " ", "A", " ", "b"]], "+", RowBox[List["A", " ", SuperscriptBox["b", "3"]]], "+", RowBox[List[SuperscriptBox["a", "3"], " ", "B"]], "-", RowBox[List["3", " ", "a", " ", SuperscriptBox["b", "2"], " ", "B"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["a", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["A", "+", RowBox[List["B", " ", RowBox[List["Tan", "[", "z", "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["A", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["B", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tan", "[", "z", "]"]]]]]], ")"]], "3"]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> A </mi> <mo> + </mo> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sec </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> B </mi> </mrow> <mo> - </mo> <mrow> <mi> A </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> A </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> B </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> A </mi> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mi> B </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> B </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> A </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> B </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mi> A </mi> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> B </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> A </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> B </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> A </mi> <mo> + </mo> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> A </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> B </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <plus /> <ci> A </ci> <apply> <times /> <ci> B </ci> <apply> <tan /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tan /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <sec /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> B </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> A </ci> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> A </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> <ci> B </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> A </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <ci> B </ci> </apply> </apply> </apply> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> B </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> A </ci> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> B </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <ci> A </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> B </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> A </ci> <ci> b </ci> <ci> a </ci> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> B </ci> </apply> </apply> <apply> <sin /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> A </ci> <apply> <times /> <ci> B </ci> <apply> <tan /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> A </ci> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> B </ci> <apply> <sin /> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <tan /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["A_", "+", RowBox[List["B_", " ", RowBox[List["Tan", "[", "z_", "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Tan", "[", "z_", "]"]]]]]], ")"]], "3"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Sec", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "A"]], " ", "b"]], "+", RowBox[List["a", " ", "B"]]]], ")"]]]], "+", FractionBox[RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "a", " ", "A", " ", "b"]], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "B"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", "B"]]]], ")"]], " ", RowBox[List["Sin", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], ")"]]]], "a"], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["a", "3"], " ", "A"]], "-", RowBox[List["3", " ", "a", " ", "A", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["a", "2"], " ", "b", " ", "B"]], "-", RowBox[List[SuperscriptBox["b", "3"], " ", "B"]]]], ")"]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], ")"]], "2"]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", SuperscriptBox["a", "2"], " ", "A", " ", "b"]], "+", RowBox[List["A", " ", SuperscriptBox["b", "3"]]], "+", RowBox[List[SuperscriptBox["a", "3"], " ", "B"]], "-", RowBox[List["3", " ", "a", " ", SuperscriptBox["b", "2"], " ", "B"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["a", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["b", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["A", "+", RowBox[List["B", " ", RowBox[List["Tan", "[", "z", "]"]]]]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["A", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", RowBox[List["B", " ", RowBox[List["Sin", "[", "z", "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Tan", "[", "z", "]"]]]]]], ")"]], "3"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.