Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Tan






Mathematica Notation

Traditional Notation









Elementary Functions > Tan[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving algebraic functions of the direct function > Involving (a+b tan1/2(c z))beta





http://functions.wolfram.com/01.08.21.0133.01









  


  










Input Form





Integrate[Tan[c z]/(a + b Sqrt[Tan[c z]])^2, z] == (1/(2 (a^4 + b^4)^2 c)) (-2 b (Sqrt[2] a^5 - 3 a^4 b + 2 Sqrt[2] a^3 b^2 - Sqrt[2] a b^4 + b^5) ArcTan[1 - Sqrt[2] Sqrt[Tan[c z]]] - 2 b ((-Sqrt[2]) a^5 - 3 a^4 b - 2 Sqrt[2] a^3 b^2 + Sqrt[2] a b^4 + b^5) ArcTan[1 + Sqrt[2] Sqrt[Tan[c z]]] - 4 (a^6 - 3 a^2 b^4) Log[a + b Sqrt[Tan[c z]]] - Sqrt[2] a b (a^4 - 2 a^2 b^2 - b^4) Log[-1 + Sqrt[2] Sqrt[Tan[c z]] - Tan[c z]] + Sqrt[2] a b (a^4 - 2 a^2 b^2 - b^4) Log[1 + Sqrt[2] Sqrt[Tan[c z]] + Tan[c z]] + (a^6 - 3 a^2 b^4) Log[1 + Tan[c z]^2] + (4 a^3 (a^4 + b^4))/(a + b Sqrt[Tan[c z]]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "+", SuperscriptBox["b", "4"]]], ")"]], "2"], " ", "c"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", SuperscriptBox["a", "5"]]], "-", RowBox[List["3", " ", SuperscriptBox["a", "4"], " ", "b"]], "+", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "2"]]], "-", RowBox[List[SqrtBox["2"], " ", "a", " ", SuperscriptBox["b", "4"]]], "+", SuperscriptBox["b", "5"]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List["1", "-", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["2"]]], " ", SuperscriptBox["a", "5"]]], "-", RowBox[List["3", " ", SuperscriptBox["a", "4"], " ", "b"]], "-", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List[SqrtBox["2"], " ", "a", " ", SuperscriptBox["b", "4"]]], "+", SuperscriptBox["b", "5"]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List["1", "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "6"], "-", RowBox[List["3", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "4"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], "]"]]]], "-", RowBox[List[SqrtBox["2"], " ", "a", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "-", SuperscriptBox["b", "4"]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]], "-", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], "]"]]]], "+", RowBox[List[SqrtBox["2"], " ", "a", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "-", SuperscriptBox["b", "4"]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]], "+", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "6"], "-", RowBox[List["3", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "4"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], "]"]]]], "+", FractionBox[RowBox[List["4", " ", SuperscriptBox["a", "3"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "+", SuperscriptBox["b", "4"]]], ")"]]]], RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> - </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msup> <mi> b </mi> <mn> 5 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <msup> <mi> b </mi> <mn> 5 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 6 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 6 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <ci> a </ci> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <arctan /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 6 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 6 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Tan", "[", RowBox[List["c_", " ", "z_"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", SuperscriptBox["a", "5"]]], "-", RowBox[List["3", " ", SuperscriptBox["a", "4"], " ", "b"]], "+", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "2"]]], "-", RowBox[List[SqrtBox["2"], " ", "a", " ", SuperscriptBox["b", "4"]]], "+", SuperscriptBox["b", "5"]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List["1", "-", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["2"]]], " ", SuperscriptBox["a", "5"]]], "-", RowBox[List["3", " ", SuperscriptBox["a", "4"], " ", "b"]], "-", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List[SqrtBox["2"], " ", "a", " ", SuperscriptBox["b", "4"]]], "+", SuperscriptBox["b", "5"]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List["1", "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "6"], "-", RowBox[List["3", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "4"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], "]"]]]], "-", RowBox[List[SqrtBox["2"], " ", "a", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "-", SuperscriptBox["b", "4"]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]], "-", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], "]"]]]], "+", RowBox[List[SqrtBox["2"], " ", "a", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "-", SuperscriptBox["b", "4"]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]], "+", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "6"], "-", RowBox[List["3", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "4"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], "]"]]]], "+", FractionBox[RowBox[List["4", " ", SuperscriptBox["a", "3"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "+", SuperscriptBox["b", "4"]]], ")"]]]], RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "+", SuperscriptBox["b", "4"]]], ")"]], "2"], " ", "c"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.