Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Tan






Mathematica Notation

Traditional Notation









Elementary Functions > Tan[z] > Integration > Indefinite integration > Involving functions of the direct function and trigonometric functions > Involving powers of the direct function and trigonometric functions > Involving algebraic functions of cos > Involving cos(2c z)(a+b cos(2c z))beta





http://functions.wolfram.com/01.08.21.0192.01









  


  










Input Form





Integrate[Cos[2 c z] Sqrt[a + a Cos[2 c z]] Tan[c z]^2, z] == (-(1/(6 c))) (Sqrt[a + a Cos[2 c z]] Sec[c z] (-6 Log[Cos[(c z)/2] - Sin[(c z)/2]] + 6 Log[Cos[(c z)/2] + Sin[(c z)/2]] - 9 Sin[c z] + Sin[3 c z]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Cos", "[", RowBox[List["2", "c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["2", "c", " ", "z"]], "]"]]]]]]], " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["6", " ", "c"]]]]], RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]], " ", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "6"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "-", RowBox[List["Sin", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "+", RowBox[List["Sin", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]]]], "-", RowBox[List["9", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["Sin", "[", RowBox[List["3", " ", "c", " ", "z"]], "]"]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> a </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> a </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> a </ci> </apply> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> a </ci> </apply> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -6 </cn> <apply> <ln /> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ln /> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List["2", " ", "c_", " ", "z_"]], "]"]], " ", SqrtBox[RowBox[List["a_", "+", RowBox[List["a_", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c_", " ", "z_"]], "]"]]]]]]], " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]], " ", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "6"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "-", RowBox[List["Sin", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]]]], "+", RowBox[List["6", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "+", RowBox[List["Sin", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]]]], "-", RowBox[List["9", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["Sin", "[", RowBox[List["3", " ", "c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["6", " ", "c"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.