Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Tan






Mathematica Notation

Traditional Notation









Elementary Functions > Tan[z] > Representations through equivalent functions > With related functions > Involving csch





http://functions.wolfram.com/01.08.27.0071.01









  


  










Input Form





Tan[z] == (1/Sqrt[-Csch[I z]^2 - 1]) (-1)^Floor[(2 Re[z])/Pi] (1 - (1 + (-1)^(Floor[Re[z]/Pi] + Floor[-(Re[z]/Pi)])) UnitStep[Im[z]]) (1 - (1 + (-1)^(Floor[Re[z]/Pi + 1/2] + Floor[-(Re[z]/Pi) - 1/2])) UnitStep[-Im[z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Tan", "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Csch", "[", RowBox[List["\[ImaginaryI]", " ", "z"]], "]"]], "2"]]], "-", "1"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["2", RowBox[List["Re", "[", "z", "]"]]]], "\[Pi]"], "]"]]], RowBox[List["(", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], "+", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"]]], "]"]]]]]]], ")"]], " ", RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "z", "]"]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "+", FractionBox["1", "2"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"]]], "-", FractionBox["1", "2"]]], "]"]]]]]]], ")"]], " ", RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Im", "[", "z", "]"]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <msup> <mi> csch </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#952; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#952; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <tan /> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <csch /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> &#952; </ci> <apply> <imaginary /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <floor /> <apply> <plus /> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <floor /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> &#952; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <imaginary /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Tan", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["2", " ", RowBox[List["Re", "[", "z", "]"]]]], "\[Pi]"], "]"]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "]"]], "+", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"]]], "]"]]]]]]], ")"]], " ", RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "z", "]"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"], "+", FractionBox["1", "2"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"]]], "-", FractionBox["1", "2"]]], "]"]]]]]]], ")"]], " ", RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Im", "[", "z", "]"]]]], "]"]]]]]], ")"]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Csch", "[", RowBox[List["\[ImaginaryI]", " ", "z"]], "]"]], "2"]]], "-", "1"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.