Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Tanh






Mathematica Notation

Traditional Notation









Elementary Functions > Tanh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic functions > Involving cosh > Involving cosh(b z)





http://functions.wolfram.com/01.21.21.0099.01









  


  










Input Form





Integrate[Cosh[z] Tanh[4 z], z] == ((1/126) (63 E^(8 z) Hypergeometric2F1[-(1/8), 1, 7/8, -E^(8 z)] - 63 E^(10 z) Hypergeometric2F1[1/8, 1, 9/8, -E^(8 z)] + 9 E^(16 z) Hypergeometric2F1[7/8, 1, 15/8, -E^(8 z)] + 7 E^(18 z) Hypergeometric2F1[9/8, 1, 17/8, -E^(8 z)]))/E^(9 z)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Cosh", "[", "z", "]"]], RowBox[List["Tanh", "[", RowBox[List["4", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "126"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "9"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["63", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["1", "8"]]], ",", "1", ",", FractionBox["7", "8"], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "z"]]]]]]], "]"]]]], "-", RowBox[List["63", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["10", " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "8"], ",", "1", ",", FractionBox["9", "8"], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "z"]]]]]]], "]"]]]], "+", RowBox[List["9", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["16", " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["7", "8"], ",", "1", ",", FractionBox["15", "8"], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "z"]]]]]]], "]"]]]], "+", RowBox[List["7", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["18", " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["9", "8"], ",", "1", ",", FractionBox["17", "8"], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "z"]]]]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 126 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mn> 9 </mn> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 63 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 9 </mn> <mn> 8 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;8&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;9&quot;, &quot;8&quot;], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;8&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 7 </mn> <mn> 8 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 15 </mn> <mn> 8 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;7&quot;, &quot;8&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;15&quot;, &quot;8&quot;], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;8&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 18 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 9 </mn> <mn> 8 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 17 </mn> <mn> 8 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;9&quot;, &quot;8&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;17&quot;, &quot;8&quot;], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;8&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 63 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 7 </mn> <mn> 8 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;8&quot;]]], Hypergeometric2F1], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;7&quot;, &quot;8&quot;], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;\[ExponentialE]&quot;, RowBox[List[&quot;8&quot;, &quot; &quot;, &quot;z&quot;]]]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <cosh /> <ci> z </ci> </apply> <apply> <tanh /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 126 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -9 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -63 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 10 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='rational'> 1 <sep /> 8 </cn> <cn type='integer'> 1 </cn> <cn type='rational'> 9 <sep /> 8 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 16 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='rational'> 7 <sep /> 8 </cn> <cn type='integer'> 1 </cn> <cn type='rational'> 15 <sep /> 8 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 18 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='rational'> 9 <sep /> 8 </cn> <cn type='integer'> 1 </cn> <cn type='rational'> 17 <sep /> 8 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 63 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> 1 </cn> <cn type='rational'> 7 <sep /> 8 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Cosh", "[", "z_", "]"]], " ", RowBox[List["Tanh", "[", RowBox[List["4", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "126"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "9"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["63", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["1", "8"]]], ",", "1", ",", FractionBox["7", "8"], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "z"]]]]]]], "]"]]]], "-", RowBox[List["63", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["10", " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "8"], ",", "1", ",", FractionBox["9", "8"], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "z"]]]]]]], "]"]]]], "+", RowBox[List["9", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["16", " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["7", "8"], ",", "1", ",", FractionBox["15", "8"], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "z"]]]]]]], "]"]]]], "+", RowBox[List["7", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["18", " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["9", "8"], ",", "1", ",", FractionBox["17", "8"], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "z"]]]]]]], "]"]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.