html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Tanh

 http://functions.wolfram.com/01.21.21.0180.01

 Input Form

 Integrate[E^(p z) Sin[a z] Sinh[b z] Tanh[c z], z] == (1/4) I ((E^(((-I) a - b + p) z) Hypergeometric2F1[((-I) a - b + p)/(2 c), 1, 1 + ((-I) a - b + p)/(2 c), -E^(2 c z)])/((-I) a - b + p) - (E^((I a - b + p) z) Hypergeometric2F1[(I a - b + p)/(2 c), 1, 1 + (I a - b + p)/(2 c), -E^(2 c z)])/(I a - b + p) - (1/((-I) a + b + p)) (E^(((-I) a + b + p) z) Hypergeometric2F1[ ((-I) a + b + p)/(2 c), 1, 1 + ((-I) a + b + p)/(2 c), -E^(2 c z)]) + (E^((I a + b + p) z) Hypergeometric2F1[(I a + b + p)/(2 c), 1, 1 + (I a + b + p)/(2 c), -E^(2 c z)])/(I a + b + p) - (E^(((-I) a - b + 2 c + p) z) Hypergeometric2F1[ 1 + ((-I) a - b + p)/(2 c), 1, 2 + ((-I) a - b + p)/(2 c), -E^(2 c z)])/ ((-I) a - b + 2 c + p) + (1/(I a - b + 2 c + p)) (E^((I a - b + 2 c + p) z) Hypergeometric2F1[1 + (I a - b + p)/(2 c), 1, 2 + (I a - b + p)/(2 c), -E^(2 c z)]) + (E^(((-I) a + b + 2 c + p) z) Hypergeometric2F1[ 1 + ((-I) a + b + p)/(2 c), 1, 2 + ((-I) a + b + p)/(2 c), -E^(2 c z)])/ ((-I) a + b + 2 c + p) - (1/(I a + b + 2 c + p)) (E^((I a + b + 2 c + p) z) Hypergeometric2F1[1 + (I a + b + p)/(2 c), 1, 2 + (I a + b + p)/(2 c), -E^(2 c z)]))

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]]], "-", RowBox[List[FractionBox["1", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]]

 MathML Form

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Sin", "[", RowBox[List["a_", " ", "z_"]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["Tanh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", "1", ",", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "-", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", "c"]], "+", "p"]]]]], ")"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2002-12-18

© 1998-2013 Wolfram Research, Inc.