Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Tanh






Mathematica Notation

Traditional Notation









Elementary Functions > Tanh[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving algebraic functions of the direct function > Involving ((a+b tanh2(c z))n)beta





http://functions.wolfram.com/01.21.21.0251.01









  


  










Input Form





Integrate[Tanh[c z] Sqrt[(a + b Tanh[c z]^2)^5], z] == (1/c) (Cosh[c z]^5 ((4 Sqrt[2] ((a + b) Cosh[c z]^2)^(5/2) Log[Sqrt[2] Sqrt[(a + b) Cosh[c z]^2] + Sqrt[a - b + (a + b) Cosh[2 c z]]] Sech[c z]^5)/ (a - b + (a + b) Cosh[2 c z])^(5/2) - (4 Sech[c z] (23 (a + b)^2 - 11 b (a + b) Sech[c z]^2 + 3 b^2 Sech[c z]^4))/(15 (a - b + (a + b) Cosh[2 c z])^2)) Sqrt[(a + b Tanh[c z]^2)^5])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "5"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "c"], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "5"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["4", " ", SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]], "+", SqrtBox[RowBox[List["a", "-", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], "5"]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], RowBox[List["5", "/", "2"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["4", " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["23", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"]]], "-", RowBox[List["11", " ", "b", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], "4"]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["15", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], "2"]]], ")"]]]]]], ")"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "5"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </msqrt> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> c </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> + </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 23 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 15 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11 </cn> <ci> b </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 23 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Tanh", "[", RowBox[List["c_", " ", "z_"]], "]"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "5"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "5"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["4", " ", SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]], "+", SqrtBox[RowBox[List["a", "-", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], RowBox[List["5", "/", "2"]]]], "-", FractionBox[RowBox[List["4", " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["23", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"]]], "-", RowBox[List["11", " ", "b", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], "4"]]]]], ")"]]]], RowBox[List["15", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], "2"]]]]]], ")"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "5"]]]], "c"]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.