Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Tanh






Mathematica Notation

Traditional Notation









Elementary Functions > Tanh[z] > Integration > Indefinite integration > Involving functions of the direct function and hyperbolic functions > Involving algebraic functions of the direct function and hyperbolic functions > Involving sinh and cosh





http://functions.wolfram.com/01.21.21.0366.01









  


  










Input Form





Integrate[(Cosh[z]^3 (Cosh[2 z] - 3 Tanh[z]))/((Sinh[z]^2 - Sinh[2 z]) Sqrt[Sinh[2 z]^5]), z] == (1/(240 Sqrt[Sinh[2 z]^5])) (Cosh[z]^2 (51 Cosh[z] - 3 Cosh[3 z] - 50 Sinh[z] - 50 Sinh[3 z] - 690 (-1)^(1/4) Sqrt[1 + Coth[z/2]^2] EllipticF[I ArcSinh[(-1)^(1/4)/Sqrt[Tanh[z/2]]], -1] Sinh[z]^3 Sqrt[Tanh[z/2]] + 690 (-1)^(1/4) Sqrt[1 + Coth[z/2]^2] EllipticPi[(-1)^(1/6), I ArcSinh[(-1)^(1/4)/Sqrt[Tanh[z/2]]], -1] Sinh[z]^3 Sqrt[Tanh[z/2]] + 690 (-1)^(1/4) Sqrt[1 + Coth[z/2]^2] EllipticPi[(-1)^(5/6), I ArcSinh[(-1)^(1/4)/Sqrt[Tanh[z/2]]], -1] Sinh[z]^3 Sqrt[Tanh[z/2]]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]], "-", RowBox[List["3", " ", RowBox[List["Tanh", "[", "z", "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "2"], "-", RowBox[List["Sinh", "[", RowBox[List["2", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["2", " ", "z"]], "]"]], "5"]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["240", " ", SqrtBox[SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["2", " ", "z"]], "]"]], "5"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["51", " ", RowBox[List["Cosh", "[", "z", "]"]]]], "-", RowBox[List["3", " ", RowBox[List["Cosh", "[", RowBox[List["3", " ", "z"]], "]"]]]], "-", RowBox[List["50", " ", RowBox[List["Sinh", "[", "z", "]"]]]], "-", RowBox[List["50", " ", RowBox[List["Sinh", "[", RowBox[List["3", " ", "z"]], "]"]]]], "-", RowBox[List["690", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Coth", "[", FractionBox["z", "2"], "]"]], "2"]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], SqrtBox[RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]], "]"]]]], ",", RowBox[List["-", "1"]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "3"], " ", SqrtBox[RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]]], "+", RowBox[List["690", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Coth", "[", FractionBox["z", "2"], "]"]], "2"]]]], " ", RowBox[List["EllipticPi", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "6"]]], ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], SqrtBox[RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]], "]"]]]], ",", RowBox[List["-", "1"]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "3"], " ", SqrtBox[RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]]], "+", RowBox[List["690", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Coth", "[", FractionBox["z", "2"], "]"]], "2"]]]], " ", RowBox[List["EllipticPi", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["5", "/", "6"]]], ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], SqrtBox[RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]], "]"]]]], ",", RowBox[List["-", "1"]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "3"], " ", SqrtBox[RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> sinh </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 240 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> sinh </mi> <mn> 5 </mn> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 690 </mn> </mrow> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> coth </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mrow> <msup> <mi> tanh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 690 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> coth </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 6 </mn> </mroot> <mo> ; </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mrow> <msup> <mi> tanh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 690 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> coth </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> ; </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mrow> <msup> <mi> tanh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 50 </mn> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 51 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 50 </mn> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <sinh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 240 </cn> <apply> <power /> <apply> <power /> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -690 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <coth /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <sinh /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 690 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <coth /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticPi </ci> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <sinh /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 690 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <coth /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticPi </ci> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <sinh /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 50 </cn> <apply> <sinh /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 51 </cn> <apply> <cosh /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 50 </cn> <apply> <sinh /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z_", "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", RowBox[List["2", " ", "z_"]], "]"]], "-", RowBox[List["3", " ", RowBox[List["Tanh", "[", "z_", "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sinh", "[", "z_", "]"]], "2"], "-", RowBox[List["Sinh", "[", RowBox[List["2", " ", "z_"]], "]"]]]], ")"]], " ", SqrtBox[SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["2", " ", "z_"]], "]"]], "5"]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["51", " ", RowBox[List["Cosh", "[", "z", "]"]]]], "-", RowBox[List["3", " ", RowBox[List["Cosh", "[", RowBox[List["3", " ", "z"]], "]"]]]], "-", RowBox[List["50", " ", RowBox[List["Sinh", "[", "z", "]"]]]], "-", RowBox[List["50", " ", RowBox[List["Sinh", "[", RowBox[List["3", " ", "z"]], "]"]]]], "-", RowBox[List["690", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Coth", "[", FractionBox["z", "2"], "]"]], "2"]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], SqrtBox[RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]], "]"]]]], ",", RowBox[List["-", "1"]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "3"], " ", SqrtBox[RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]]], "+", RowBox[List["690", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Coth", "[", FractionBox["z", "2"], "]"]], "2"]]]], " ", RowBox[List["EllipticPi", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "6"]]], ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], SqrtBox[RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]], "]"]]]], ",", RowBox[List["-", "1"]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "3"], " ", SqrtBox[RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]]], "+", RowBox[List["690", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Coth", "[", FractionBox["z", "2"], "]"]], "2"]]]], " ", RowBox[List["EllipticPi", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["5", "/", "6"]]], ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], SqrtBox[RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]], "]"]]]], ",", RowBox[List["-", "1"]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "3"], " ", SqrtBox[RowBox[List["Tanh", "[", FractionBox["z", "2"], "]"]]]]]]], ")"]]]], RowBox[List["240", " ", SqrtBox[SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["2", " ", "z"]], "]"]], "5"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.