Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Tanh






Mathematica Notation

Traditional Notation









Elementary Functions > Tanh[z] > Introduction to the Hyperbolic Tangent Function





Defining the hyperbolic tangent function


The hyperbolic tangent function is an old mathematical function. It was first used in the work by L'Abbe Sauri (1774).

This function is easily defined as the ratio between the hyperbolic sine and the cosine functions (or expanded, as the ratio of the half‐difference and half‐sum of two exponential functions in the points and ):

After comparison with the famous Euler formulas for the sine and cosine functions, and , it is easy to derive the following representation of the hyperbolic tangent through the circular tangent function:

This formula allows the derivation of all the properties and formulas for the hyperbolic tangent from the corresponding properties and formulas for the circular tangent.





© 1998- Wolfram Research, Inc.