Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File


Developed with Mathematica -- Download a Free Trial Version


Mathematica Notation

Traditional Notation

Elliptic Functions > ArithmeticGeometricMean[a,b] > Introduction to the Arithmetic‚ÄźGeometric Mean


The arithmetic-geometric mean appeared in the works of J. Landen (1771, 1775) and J.‐L. Lagrange (1784-1785) who defined it through the following quite‐natural limit procedure:

C. F. Gauss (1791–1799, 1800, 1876) continued to research this limit and in 1800 derived its representation through the hypergeometric function .