html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 DedekindEta

 http://functions.wolfram.com/09.49.20.0005.01

 Input Form

 Derivative[1][DedekindEta][I] == -((I Pi^(1/4))/(Sqrt[2] Gamma[-(1/4)]))

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["DedekindEta", TagBox[RowBox[List["(", "1", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "\[ImaginaryI]", "]"]], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", RowBox[List["1", "/", "4"]]]]], RowBox[List[SqrtBox["2"], " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["1", "4"]]], "]"]]]]]]]]]]]

 MathML Form

 η ( ) - π 4 2 Γ ( - 1 4 ) η -1 1 4 2 1 2 Gamma -1 1 4 -1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["DedekindEta", "\[Prime]", Rule[MultilineFunction, None]], "[", "\[ImaginaryI]", "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", RowBox[List["1", "/", "4"]]]]], RowBox[List[SqrtBox["2"], " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["1", "4"]]], "]"]]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2007-05-02

© 1998-2013 Wolfram Research, Inc.